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Abstract

The work contained in this thesis is mainly based on the author's research on the nu-

merical analysis of a class of singularly perturbed di�erential equation with a multiple

boundary turning points on a closed domain. The theory of singular perturbations is not

a settled direction in mathematics and the process of its improvement is a dramatic one.

With the escalated advancement of science and technology, numerous practical problems,

for example, the mathematical boundary layer theory or approximation of solutions of

di�erent problems portrayed by di�erential equations involving large or small parameters,

become progressively unpredictable, and, in this manner, in their examination, it is nor-

mal to utilize asymptotic methods. In certain problems, the perturbations are operated

across a very narrow region over which the dependent variable experiences extremely fast

changes. These narrow regions frequently adjoin the boundaries of the domain of interest,

owing to the way that the small parameter multiplies the highest derivative. As a result,

they are usually alluded to as boundary layers in �uid mechanics, edge layers in solid

mechanics, skin layers in electrical applications, shock layers in �uid and solid mechanics,

transition points in quantum mechanics, and Stokes lines and surfaces in mathematics.

Boundary turning point problems, on the other hand, arise naturally in geophysics and

in modeling thermal boundary layers in laminar �ow. In particular, singularly perturbed

turning point problems received much attention in the literature due to the complexity

involved in �nding uniformly valid asymptotic expansions, unlike non-turning problems.

The research aims to design a numerically consistent scheme for the singularly perturbed

multiple turning point problems that is e�cient and robust than the existing methods.

The objectives of this research are to conduct a thorough investigation into the proper-

ties of singularly perturbed multiple turning point problems, to design and structure the

numerical scheme based on spline collocation, to determine the convergence of the con-

structed scheme and to examine the solution pro�les of the test problems using MATLAB

software and compare the e�ciency and accuracy with the existing solutions.

Since the multiple turning point problem has a boundary layer in the vicinity of x = 0,

therefore, a �tted piecewise uniform Shishkin mesh (S-mesh) was introduced to circum-

vent the oscillations as ε → 0 that discretises Ω̄ = [0, 1] with N = {2m,m ≥ 2} mesh

elements. A minimum principle, stability estimate, and bounds on the solution and its

derivatives are established. B-spline collocation on a �tted S-mesh is used to obtain
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the approximate solution to the multiple turning point problems. Previously obtained

bounds are applied in the convergence analysis of the illustrated scheme. Furthermore, it

is proved that the proposed method is uniformly convergent with respect to the singular

perturbation parameter ε. Some relevant numerical examples are illustrated to verify

the theoretical aspects computationally and the results are compared with other existing

methods to show that the proposed method provides more accurate solutions.
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1 Introduction

1.1 Di�erential Equation

A di�erential equation is a mathematical equation that associates some function with its

derivatives [142]. In applications, the functions generally represent physical quantities,

the derivatives indicate their rates of change, and the di�erential equation de�nes a rela-

tionship between the two. As such relations are extremely general, di�erential equations

play a key role in numerous disciplines like engineering, physics, economics, and biology.

In pure mathematics, di�erential equations are considered from alternate points of view,

generally caught with their answers to the arrangement of capacities that ful�ll the condi-

tion. Only the simplest di�erential equations are solvable by explicit formulas; nonethe-

less, a few properties of arrangements of a given di�erential condition might be resolved

without �nding their precise structure. On the o� chance that a closed-form expression

for the solution isn't accessible, the solution might be numerically approximated utiliz-

ing computers. The hypothesis of dynamical frameworks puts an accentuation on the

subjective investigation of frameworks depicted by di�erential conditions, while numer-

ous numerical strategies have been created to decide arrangements with a given level of

precision.

Di�erential conditions previously appeared with the development of calculus by Newton

and Leibniz. In Chapter 2 of his 1671 work, `The Method of Fluxions and In�nite

Series', Isaac Newton [102] recorded three types of di�erential conditions:

dy
dx

= f(x), dy
dx

= f(x, y), and x1
∂y
∂x1

+ x2
∂y
∂x2

= y.

In all these cases, y is an unknown function of x (or x1and x2), and f is a given

function. He solves these examples and others using in�nite series and examines the

non-uniqueness of these solutions.

In 1695, Jacob Bernoulli [15] proposed the Bernoulli di�erential equation given of the

form

y′ + P (x)y = Q(x)yn.
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1.2 Singularly Perturbed Boundary Value Problems

In the following year, Leibniz found its solution by simplifying it [46]. In the year 1750,

the Euler-Lagrange equation [120] was developed regarding their investigations of the

tautochrone problem. This is the issue of determining a curve on which a weighted

particle will fall to a �xed point in a �xed measure of time, independent of the starting

point. Lagrange tackled this issue in 1755 and sent the answer to Euler. Both further

built up Lagrange's technique and applied it to mechanics, which prompted the de�nition

of Lagrangian mechanics. In 1822, Fourier [39] published his work on heat �ow in `The

Analytic Theory of Heat', where he put together his reasoning on Newton's law of cooling,

namely, that the �ow of heat between two adjacent molecules is proportional to the

incredibly little contrast of their temperatures. Contained in this book was Fourier's

proposal of his heat equation for conductive di�usion of heat. This partial di�erential

equation is now educated to each understudy of mathematical physics.

1.2 Singularly Perturbed Boundary Value Problems

The theory of singular perturbations is not a regulated direction in mathematics and

the way in which it is enhanced is dramatic. As science and technology advance, many

practical problems, such as mathematical boundary layer theory or approximation of

solutions of various problems modelled by di�erential equations involving large or small

parameters, become increasingly unpredictable, and asymptotic methods are commonly

used to investigate them. In any case, the asymptotic analysis of di�erential operators

has a created hypothesis in the case of regular perturbations, when the perturbations

convey a subordinate character as for the unperturbed operator. In certain problems,

the perturbations are operated across a very narrow region over which the dependent

variable experiences extremely fast changes. These narrow regions frequently adjoin the

boundaries of the domain of interest, owing to the way that the small parameter multiplies

the highest derivative. As a result, they are usually alluded to as boundary layers in �uid

mechanics, edge layers in solid mechanics, skin layers in electrical applications, shock

layers in �uid and solid mechanics, transition points in quantum mechanics, and Stokes

lines and surfaces in mathematics.

Towards the end of the nineteenth century, the study of �uid mechanics was veering in two

unrelated directions: theoretical hydrodynamics and hydraulics. The former developed

from Euler conditions for inviscid �ows and accomplished a high level of ful�llment.

Unfortunately, the results attained by utilizing this classical science remained in glaring

logical inconsistency to test results. The celebrated d'Alembert's paradox is an illustrative

example. This stimulated the researchers to build up their own exact study of hydraulics

which depended basically on a large number of experimental data. In his seminal paper

on �Fluid motion with very small friction�, Prandtl demonstrated that the �ow about a
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1.2 Singularly Perturbed Boundary Value Problems

body can be treated by partitioning it into two regions: a very thin layer in proximity

to the body (which he called boundary layer) where frictional e�ects are prominent,

and the remaining outside region. Based on this speculation, Prandtl emphasized the

signi�cance of viscous �ows without digging into the mathematical complexities involved.

This boundary layer theory later turned into the establishment stone for modern �uid

dynamics. Accordingly, the introduction of singular perturbations occurred at the Third

International Congress of Mathematicians in Heidelberg in 1904. Prandtl's [109] seven-

page report was contained in the proceedings of the conference. Nonetheless, the term

�singular perturbations� was �rst utilized in the work of Friedrichs and Wasow [40], a

paper which pursued a productive New York University seminar on nonlinear vibrations.

The solution of singular perturbation problems commonly contains layers. Even though

Prandtl presented the terminology �boundary layer� in this conference, it received a lot

more prominent sweeping statements in the considerable work of Wasow [131].

Numerical analysis and asymptotic analysis are two principal approaches towards solving

singular perturbation problems. Since the objectives and the problem classes are rather

di�erent, there has not been a lot of connections between these techniques. The numer-

ical analysis attempts to give quantitative information about a speci�c problem, while

asymptotic analysis attempts to pick up knowledge into the qualitative behaviour of a

family of problems and only semi-quantitative information about any speci�c member

of the family. Numerical methods are planned for expansive classes of problems and

are planned to minimize demands upon the problem solver. Asymptotic methods treat

similarly con�ned classes of problems and require the problem solver to make them com-

prehend the behaviour of the solution expected. Since the mid-1960s, the area of singular

perturbations has steadily developed to the point where the subject is generally part of

graduate understudies tackling problems of applied mathematics and numerous �elds of

engineering. Various great reading materials has shown up in this area which either man-

aged with an asymptotic approach or with numerical ones. This list is quite extensive,

but a noteworthy few are mentioned below: Bellman [12], Kaplun [64], Van Dyke [122],

Hemker and Miller [53], Hughes [56], Brauner et al. [17], Doolan et al. [26], O'Malley

[107, 106], Morton [94], Verhulst [124, 125], Roos et al. [114], Axelsson et al. [9], Eckhaus

[29, 30], Nayfeh [100, 101], Holmes [54], Kevorkian and Cole [67], Miller et al. [90], and

Bender and Orszag [13].

A numerical method based on the asymptotic expansion technique and the reproduc-

ing kernel method (RKM) [44] was used for solving singularly perturbed turning point

problems exhibiting an interior layer. A modi�cation of the Shishkin discretisation mesh

[130] was designed for the numerical solution of one-dimensional singularly perturbed

reaction-di�usion problems. The modi�cation consists of a slightly di�erent choice of the

transition points between the �ne and coarse parts of the mesh. The change did not
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1.2 Singularly Perturbed Boundary Value Problems

a�ect the order of convergence of the numerical solution obtained by using the central

�nite-di�erence scheme. Berger et al. [14] derived bounds for the derivatives of the solu-

tion of a singularly perturbed turning point problem. They used the modi�cation of the

El-Mistikawy Werle �nite-di�erence scheme at the turning point that showed a uniform

error estimate for the resulting method.

Kadalbajoo et al. [59] proposed a numerical scheme to solve singularly perturbed two-

point boundary value problems with a turning point exhibiting twin boundary layers.

The scheme comprises of a cubic spline collocation method on a uniform mesh using

arti�cial viscosity, which leads to a tridiagonal linear system. Geetha and Tamilselvan

[42] constructed a robust numerical method based on a �nite-di�erence scheme on a

Shishkin mesh for a class of convection-di�usion type turning point problems with Robin

type boundary conditions. Mittal [93] proposed a numerical method to approximate the

solution of the nonlinear parabolic partial di�erential equation with Neumann's boundary

conditions. It is based on the collocation of cubic B-splines over �nite elements so as to

maintain the continuity of the dependent variable and its �rst two derivatives throughout

the solution range. The method was applied to spatial variables and its derivatives, which

produced a system of �rst-order ordinary di�erential equations.

Zhang et al. [141] considered a collocation method for the numerical solution of fourth-

order partial integrodi�erential equations. The scheme is based on the second-order

backward di�erential formula in the time direction and the quintic B-spline method for

the spatial derivatives. A one-dimensional reaction-di�usion-convection problem is nu-

merically solved by a �nite element method on two layer-adapted meshes, Duran-type

mesh and Duran-Shishkin-type mesh, both de�ned by recursive formulae [18].

Kadalbajoo and Reddy [63] conducted a study of di�erent asymptotic and numerical

methods developed for the determination of the approximate solution of singular pertur-

bation problems of various kinds. Kadalbajoo and Patidar [61, 62] broadened the work

done by Kadalbajoo and Reddy. In this work, they considered one-dimensional prob-

lems only and discussed the work done on linear, nonlinear, semilinear and quasilinear

problems.

The one-dimensional singular perturbation problems

−εy′′ + p(x)y′ + q(x)y = g(x), y(a) = α, y(b) = β,

can be partitioned under the classes given in Table (1.2.1).
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1.2 Singularly Perturbed Boundary Value Problems

Table 1.2.1: Summary of a variety of linear problems.

Conditions of p(x) Types of solutions

Case 1: p(x) 6= 0 on a ≤ x ≤ b:
i) p(x) < 0 i) Boundary layer at x = a.
ii) p(x) > 0 ii) Boundary layer at x = b.
Case 2: p(x) = 0:
i) q(x) > 0 i) Boundary layers at x = a and x = b.
ii) q(x) < 0 ii) Rapidly oscillating solution.
Case 3: p′(x) 6= q(x), p(0) = 0:
i) p′(x) < 0 i) No boundary layers, an interior layer at x = a.
ii) p′(x) > 0 ii) Boundary layers at x = a and x = b,

no interior layer at x = a.

The advancement of small parameter methods prompted the productive use of bound-

ary layer theory in di�erent �elds of applied mathematics, for example, �uid mechanics,

�uid dynamics, elasticity, quantum mechanics, plasticity, chemical-reactor theory, aero-

dynamics, plasma dynamics, magneto-hydrodynamics, rare�ed gas dynamics, oceanog-

raphy, meteorology, di�raction theory, reaction-di�usion processes, non-equilibrium and

radiating �ows and di�erent areas of the classes of �uid motion. In this, some singular

perturbation models which emerge in various branches of applied sciences and engineering

are listed below:

Consider the one-dimensional Schrodinger equation [25]

ε
d2ψε
dx2

+ (λε + V (x))ψε = 0, ‖ψε‖ = 1

with V (x) (potential) continuous and leading to +∞ as |x| → ∞ and with ε = h (2m)
1
2

2π
, h

denoting Planck's constant andm is the mass. Associated with these ordinary di�erential

equations, the eigenvalue problem in the Hilbert space L2 (−∞,+∞) with the norm

‖u‖ =

(
+∞∫
−∞

u2(x) dx

) 1
2

has a discrete spectrum with eigenvalues λε,1, λε,2, ..., λε,n, ... and

eigenfunctions ψε,1, ψε,2, ..., ψε,n, ....

A time-independent Fokker-Planck equation [45] for a one-dimensional dynamical system

with state-independent random perturbations are represented by the following equation:

ε2 d
2ϕ
dx2

+ b(x)dϕ
dx

= 0, 0 < ε� 1, x ∈ (0, 1), ϕ(0, ε) = A, ϕ(1, ε) = B,

where b(x) denotes a gradient �eld. Under the assumptions that b′(x) are strictly negative

throughout the interval [0, 1] and that b(γ) = 0 for some 0 < γ < 1, the above problem

becomes a resonant turning point problem.
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1.2 Singularly Perturbed Boundary Value Problems

A shock wave in a one-dimensional nozzle �ow with the governing steady-state Navier-

Stokes equations [8] gives

εA(x)uu′′ −
[

1 + γ

2
− εA′(x)

]
uu′ +

u′

u
+
A′(x)

A(x)

(
1− γ − 1

2
u2

)
= 0, 0 < x < 1,

where x is the normalized downstream distance from the throat, u is a normalized velocity,

A(x) is the area of the nozzle at x, e.g., A(x) = 1 + x2, γ = 1.4 and ε is essentially the

inverse Reynolds number, i.e. ε = 4.792 × 10−8. The boundary conditions are u(0) =

0.9129 (supersonic �ow in the throat) and u(1) = 0.375. For this boundary value problem

an O(ε)-wide shock develops, whose location depends on ε.

The swirling �ow between two rotating, coaxial disks [8], located at x = 0 and x = 1

with the boundary value problem gives

εf ′′′′ + ff ′′′ + g′ = 0, 0 < x < 1,

εg′′ + fg′ − f ′g = 0,

f(0) = f(1) = f ′(0) = f ′(1) = 0,

g(0) = Ω0, g(1) = Ω1,

where Ω0 and Ω1 are the angular velocities of the in�nite disks, |Ω0| + |Ω1| 6= 0, and ε

is a velocity parameter, 0 < ε � 1. For this boundary value problem, several solutions

are possible. For instance, when Ω1 = 1, one can obtain di�erent cases for di�erent

values of Ω0. If Ω0 < 0 (with a special symmetry when Ω0 = −1), then the disks are

counter-rotating; if Ω0 = 0 then one disk is at rest, while if Ω0 > 1 then the disks are

co-rotating.

Consider an example from the theory of shells of revolution [8]. The ordinary di�erential

equations are

ε2
[
ψ′′ + 1

x
ψ′ − 1

x2
ψ
]
− 1

x
φ
(
φ0 − 1

2
φ
)

= 0,

ε2
[
φ′′ + 1

x
φ′ − 1

x2
φ
]
− 1

x
ψ (φ0 − φ) = 2κp(x),

where φ is the meridional angle change of the deformed middle surface and ψ is a stress

function. φ0(x) is φ of the undeformed shell (for a spherical shell φ0(x) = x, also consider

φ0(x) = xm, m = 2, 3 ), and

p(x) = x
(
1− γ + γ

2
x2
)
, γ = 1.2, v = 0.3, κ = 1.

The boundary conditions are φ(0) = ψ(0) = 0, φ(1) = ψ′(1)− vψ(1) = 0. For this bound-

ary value problem an interior layer (corresponding to dimpling) forms in a solution for φ.

There is an additional boundary layer at x = 1 and more than one solution exists. The
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1.2 Singularly Perturbed Boundary Value Problems

value ε = 10−4 (which gives a rather thin shell) yields a challenging numerical problem.

The mathematical model describing the motion of the sun�ower [108] is given by the

equation

εx′′(t) + ax′(t) + b sinx(t− ε) = 0, ε > 0, t ∈ [−ε, 0] ,

with x′(0) prescribed. x(t) refers to the angle of the plant with the vertical, ε is a geotropic

reaction, a and b are positive parameters obtained experimentally.

Consider the boundary layer �ow of an electrically conducting incompressible �uid (with

electric conductivity σ) over a continuously moving �at surface with B0 an imposed,

uniform magnetic �eld perpendicular to the surface. The boundary layer equation [121]

for the �ow �eld (in the nondimensionalized form) is then given by

ε∂
2u
∂y2

+ ∂u
∂y

= ∂u
∂t

+Mu, for large R0

(
ε = 1

R0

)
,

∂2u
∂y2

+ ε∂u
∂y

= ε∂u
∂t

+ εMu, for small R0,

u(0, t) = 1, u(y, t)→ 0 as y →∞, t > 0,

u(y, 0) = 0, 0 < y <∞,

where R0 = V0L
v
, the suction Reynolds number, M = σB0L

ρV0
, the Hartmann number,

u = U
Uw
, y = Y

L
, t = τV0

L
, L is the characteristic length (between the slit and the wind-up

roll), V is the suction velocity at the plate, τ is the time and the X and Y axes are taken

along and its perpendicular to the sheet, u is the velocity �eld.

The free motion of the undamped linear spring-mass system [107] with a very resistant

spring and prescribed speci�c displacement at times t = 0 and t = 1 is governed by the

two-point problem

εẍ+ x = 0, 0 ≤ t ≤ 1, x(0) = 0, x(1) = 1,

where ε2 (the ratio of the mass to the spring constant) is small. For non-exceptional small

positive values of ε, the exact solution oscillates rapidly, so no pointwise limit exists as

ε→ 0.

Assume an isothermal atmosphere [4], which is viscous and thermally conducting, pos-

sesses the upper half-space z > 0. Let's consider small oscillations about equilibrium

which depend only on the time t and on the vertical coordinate z and let p, ρ, w and

T be the perturbations in the pressure, density, vertical velocity and temperature re-

spectively, and P0, ρ0, and T0 refers to the equilibrium quantities. Then the linearised

7



1.3 Turning Point Problems

equations of motion are:

ρ0wt + pz + gρ = 4µwzz
3
,

ρt + (ρ0w)z = 0,

ρ0 [cv (Tt + qT ) + gHwz] = κTzz,

P = R (ρ0T + T0ρ)

with prescribed boundary conditions, where µ refers to the dynamic velocity coe�cient,

κ is the thermal conductivity, cv is the speci�c heat at constant volume and q is the

Newton cooling which refers to the heat exchange and proportional to the temperature

perturbation associated with the wave, R is the gas constant, g is the gravitational

acceleration and H = RT0
g

is the density scale height. It is useful to introduce the

dimensionless parameter ε = κ
µ
, ε ∝ 1

Pr
, where Pr is the Prandtl number, which measures

the relative strength of the e�ect of the viscosity with respect to that of the thermal

conductivity.

1.3 Turning Point Problems

Numerous phenomena in biology, chemistry, engineering, and physics can be portrayed

by boundary value problems associated with di�erent types of di�erential equations or

systems. At whatever point a mathematical model is related to a phenomenon, the

researchers by and large attempt to capture what is essential, retaining the important

quantities and overlooking the insigni�cant ones which involve small parameters. The

model that would be obtained by maintaining the small parameters is called the perturbed

model, while the simpli�ed model (the one that does not include the small parameters)

is called the unperturbed (or reduced) model. For research purposes, the perturbed

model can be supplanted by its unperturbed counterpart yet what is important is that

its solution must be close enough to the solution of the corresponding perturbed model.

This reality holds great in the case of regular perturbation but, in the case of singular

perturbation, it is probably not going to hold. These singular perturbation problems with

or without turning point(s) normally happen in numerous parts of applied mathematics,

e.g., as boundary layers in �uid mechanics, edge layers in solid mechanics, skin layers

in electrical applications, shock layers in �uid and solid mechanics, transition points in

quantum mechanics and Stokes lines and surfaces in mathematics. In these sorts of

problems, perturbations are usable over a very narrow region across which the dependent

variable experiences fast change. These narrow regions every now and again append the

boundaries or some interior point of the domain of interest, owing to the fact that the

small parameter multiplies the highest derivative. Therefore, these sorts of problems

exhibit boundary and/or interior layers, that is, there are narrow regions where the

8



1.3 Turning Point Problems

solution changes quickly.

Singularly perturbed di�erential equations with turning point form a signi�cant class of

problems that are exceptionally challenging and even today there is a great deal to be

investigated in this area. Additionally, problems where discontinuity in the data result in

interior layers in the solution of the problem commonly occur during modeling of physical

processes. Singular perturbation problems with turning points emerge as mathematical

models for di�erent physical phenomena. Among these, the problem with interior turning

points represents the one-dimensional version of stationary convection-di�usion problems

with a prevailing convective term and a speed �eld that changes its sign in the catch

basin. Boundary turning point problems, on the other hand, arise in geophysics [48] and

in the modeling of thermal boundary layers in the laminar �ow [115]. The problem from

[48] models heat �ow and mass transport near an oceanic rise. It is a single boundary

turning point problem because of the assumption that the velocity distribution is linear.

On the o� chance that one takes into consideration higher-order velocity distribution, at

that point, it turns into multiple boundary turning point problems [115].

A typical linear turning point problem in one dimension is given by

εy′′ + a(x)y′ + b(x)y = 0, x ∈ [x1, x2] , x1 < 0, x2 > 0,

where 0 < ε ≤ 1, a(x) and b(x) are su�ciently smooth. This issue has procured a lot

of enthusiasm amongst mathematicians just as physicists because of the way that the

arrangement shows some intriguing conduct, for example, boundary layer, interior layer

and resonance phenomena. When a(x) does not change the sign in the whole interval

[x1, x2], the solution is described by a boundary layer near one endpoint as ε→ 0. When

a(x) has a simple zero, say at x0 = 0 in [x1, x2], the point x0 is the so-called turning

point and the problem is categorized as a turning point problem. In this circumstance,

the solution behaviour depends upon the properties of the coe�cient functions a′(x) and

b(x) at the turning point x0 = 0. Indeed, if it is assumed that, for α, β constants,

a(x) ∼ αx and b(x) ∼ β as x→ 0 the following cases arise:

1. If α > 0, β
α
6= 1, 2, 3, ..., an internal layer occurs near the turning point x0 = 0.

2. If α < 0, β
α
6= 0,−1,−2, ..., then there are two boundary layers appearing at the

two endpoints of the interval.

3. If α < 0, β
α

= 0,−1,−2, ..., or if α > 0, β
α

= 1, 2, 3, ..., the solution exhibits a very

interesting phenomenon named as Ackerberg-O'Malley's [3] resonance phenomenon.

Another circumstance where the interior layer emerges would be the situation of singu-

larly perturbed convection-di�usion-reaction problems based on smooth data. On the o�

chance that at least one coe�cients such as the convection term, reaction term, source

9



1.3 Turning Point Problems

term or the boundary conditions are discontinuous, the solution of such type of prob-

lems exhibits strong or weak interior layers depending on the magnitude of the singular

perturbation parameter and the nature of the coe�cients.

Furthermore, some singular perturbation models with turning point(s) that simulate some

real-world problems are listed below. It also discusses some models where the interior

layer occurs due to discontinuity in the coe�cients or non-smoothness of the data.

One-dimensional equation [13] which describes a quantum mechanical particle in a po-

tential is given by(
−ε2 d

2

dx2
+ V (x)− E

)
y(x) = 0,

where V (x) and E is the potential and total energy of the particle respectively. If the

equation Q(x) = V (x)−E, then Q(x) vanishes at points where V (x) = E and these are

called turning points. The classical orbit of a particle in the potential V (x) is con�ned

to regions where V (x) ≤ E. The particle moves until it reaches a point where V (x) = E

and then it stops, turns around and moves o� in the opposite direction.

Consider the singularly perturbed boundary value problem [16]

εẍ+ g(x)ẋq = 0, 0 < t < T, x(0) = A, x(T ) = B,

where q = 0 or 1 ≤ q ≤ 2, ε refers to a �xed positive in�nitesimal parameter, T, A

and B are standard values, g(x) is a smooth function and the interval [A,B] contains

zeros of g(x). When q = 1, the boundary value problems occur in many di�erent applied

contexts as in the study of exit time problems for stochastic di�erential equations [87] and

when q = 0, it occurs in reaction-di�usion and phase transition models [38], the study of

contrast structures [20] and problems related to critical paths of Feynman integral.

Black-Scholes equation [77] models the �nancial data by means of

∂C
∂t

+ 1
2
σ2S2 ∂2C

∂S2 + rS ∂C
∂S
− rC = 0, (S, t) ∈ <+ × [0, T ),

with the �nal condition

C(S, T ) = max(S − E, 0), S ∈ <+,

and the boundary conditions at S = 0 and at S = +∞

C(0, T ) = 0, C(S, t)→ S, for S →∞, t ∈ [0, T ),

where C = C(S, t) is a European call option, S and t are the current values of the

10
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underlying asset and time; σ, E, T and r refers to volatility, exercise price, expiry time

and the risk-free interest rate respectively. This problem has a few singularities, for

example, the unbounded domain, and the piecewise smooth initial function (its �rst-

order derivative in x has a discontinuity of the �rst kind at the point x = 0).

In the stationary modeling of a semiconductor device [91], the model equations governing

the static one-dimensional case are given by

ψ′′ − ηeψ + ρe−ψ = −D,(
eψη′

)′ −R (ψ, η, ρ) = 0,(
e−ψρ′

)′ −R (ψ, η, ρ) = 0,

on Ω = (0, 1) with appropriate boundary conditions at x = 0 and x = 1. ψ is the

electrostatic potential, η and ρ are the electron and hole concentrations in the Slotboom

variables, D refers to the doping function and R is the recombination/generation rate.

The doping functionD has a large jump at a point Ω called p−n junction. The magnitude

of the jump falls in the range from 1010 units to 1020 units. The solutions η and ρ have

thin interior layers in the neighborhood of the p− n junction because of this jump. The

singular perturbation parameter λ is a function of ηeψ + ρe−ψ.

The Allen-Cahn equation [6] arising in material sciences is given by

ε2∆u+ u− u3 = 0 in Ω,
∂u
∂v

= 0 on ∂Ω,

where u(x) is a continuous realisation of the phase in a material con�ned to the region Ω

at the point x and v is the outer unit normal to ∂Ω. For this problem, there are solutions

that take value close to ±1 except for narrow regions known as transition layers.

In this section, a survey of the various numerical and asymptotic techniques used by the

researchers over some time to deal with the singularly perturbed turning point problems

are given. Throughout the section, it is assumed that ε is a small parameter such that

0 < ε� 1.

1.3.1 Asymptotic Approach

Probably the most frequent approaches in the early days were the asymptotic approaches.

They have information on the solution to the problems qualitatively (and semi-quantitatively).

Hanson and Russell [49] considered the system of the form

εh
dy

dx
= A(x, ε)y,

11
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where A(x, ε) is a 2×2 matrix having uniform asymptotic expansion. A(x, ε) =
∞∑
r=0

Ar(x)εr

as ε→ 0 in |arg ε| ≤ α0 and holomorphic for {(x, r) : |x| ≤ δ0, 0 < |ε| ≤ ε0, |arg ε| ≤ α0}.
They proved that either the above problem can be reduced to one solvable by elementary

methods or that the lead matrix A(x, ε) can be modi�ed by some explicit variables to

form A0(x) =

[
0 xk

xk+p 0

]
, where k and p are non-negative integers. They also showed

that further simpli�cations can be obtained using transformations involving asymptotic

sequence in the powers of ε for cases k = 0, h > 0, p > 0, or if h = 1, k > 0, p ≥ 0.

Dorr and Parter [27] examined the asymptotic behaviour of the solutions u(t) = u(t, ε)

and v(t) = v(t, ε) to nonlinear boundary value problems of the form

u′′ = f(t, u, v), u(0) = u(1) = 0 (0 < t < 1),

εv′′ + g(t, u, u′)v′ − c(t, u, u′)v = 0, v(0) = v0, v(1) = v1 (0 < t < 1),
(1.3.1)

where 0 ≤ v0 < v1, c ≥ 0, f , g, c are continuous and |f(t, u, v)| ≤ f0(t, v) for t ∈ [0, 1],

v ∈ [0, v1]. Some of the monotonic properties of the solutions were derived after proving

the existence of solutions in C2[0, 1] and convergence (as ε → 0+) to some limiting

functions U(t), V (t) of the family u(t, ε), v(t, ε). The �reduced equation� satis�es these

limiting functions (in some sense). For the case where these problems exhibit a turning

point phenomenon, the authors o�ered an asymptotic approach to estimate the solution

of such types of problems. The problems with interior turning points as well as problems

where the endpoints of the domain are turning points are considered and some very

helpful �ndings on the asymptotic behaviour of the solution have been derived.

Ackerberg and O'Malley [3] presented the �rst systematic treatment of singularly per-

turbed boundary value problems with turning points. They considered the boundary

value problem of the form

εy′′ + f(x; ε)y′ + g(x; ε)y = 0 (−a < x < b),

y(−a) = A and y(b) = B,
(1.3.2)

where A, B are real constants, a, b > 0, f(x; ε) has a simple zero in [−a, b] at x = 0 and

f ′(x; ε) < 0 throughout [−a, b]. The authors used the method of matched asymptotic

expansion, the WKBJ method (Wentzel-Kramers-Brillouin-Je�reys) and the asymptotic

solutions of di�erential equations derived from Sibuya [117] to research the above problem.

They de�ned the problems encountered by using matched asymptotic expansions when

dealing with such problems and also discussed the need to rely on the method of WKBJ.

They found out that paradoxical outcomes are obtained by the matched asymptotic

expansion approach by formal analysis of a variety of interesting examples. In (−a, b) with
a boundary layer at x = −a if I > 0 and at x = b if I < 0, a nontrivial solution is expected,
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where I =
b∫
−a
f(x; 0)dx. When I = 0, the boundary layer appears at both endpoints. A

turning point solution is valid for x = O (
√
ε) if I 6= 0, while a solution satisfying the

reduced equation and one of the boundary conditions is obtained elsewhere in (−a, b).
The authors provided a good discussion of the problems involved in the study of this

complex phenomenon and concluded that the method of matched asymptotic expansion is

insu�cient to provide a good approximation to solving such problems because it produces

the following paradoxical results:

1. Boundary layers of the form C1 exp
(
−k1(x+a)

ε

)
and C2 exp

(
−k2(b−x)

ε

)
are considered

to be possible at both endpoints, although only one endpoint has boundary layer if

I 6= 0 where C1, C2 are arbitrary constants independent of x and ε.

2. It is not possible to achieve a particular asymptotic expansion as one of the constants

in the expansion remains undetermined after all the matching is �nished. They

suggested a method based on WKBJ expansion to handle certain types of problems

in order to address this discrepancy.

O'Malley [105] studied the asymptotic behaviour of the solution of the di�erential equa-

tion in the form

εy′′ + 2xA(a, ε)y′ − A(x, ε)B(x, ε)y = 0, −1 < x < 1,

as where y has arbitrary values independent of ε at x = −1 and x = 1, A(x, ε) and B(x, ε)

are assumed to be real and holomorphic in |x| ≤ 1 and possesses asymptotic expansions in

the powers of ε as ε→ 0+. A(x, ε) is non zero throughout [−1, 1]. The author used Lee's

technique [75] to use asymptotic power series to transform the given di�erential equation

into Weber's equation. Then, in terms of parabolic cylindrical functions, he obtained

the desired asymptotic form of the solution above, via the Weber equation solution. He

discovered that the solution depends decisively on the sign of A(x, 0) in the following

ways:

1. If A(x, 0) > 0 then for B(0, 0) 6= −2n, n = 1, 2, 3, ..., the limit of the solution is

a function that satis�es both the boundary conditions and solves the di�erential

equation to the left as well as to the right of the turning point. In general, there

is a discontinuity at the turning point, while if B(0, 0) = −2n, n = 1, 2, 3, ..., the

solution becomes exponentially large for −1 < x < 1.

2. If A(x, 0) < 0 then B(0, 0) 6= 2m, m = 0, 1, 2, ..., tends to zero in −1 < x < 1

for the solution, while if B(0, 0) = 2m, the limiting solution becomes non-trivial in

−1 < x < 1.

The results of Ackerberg and O'Malley [3] were expanded by Watts [132] to study the

structure of the solution of the problem (1.3.2) for the case where g(x; ε) is continuously
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di�erentiable and f(x; ε) is twice di�erentiable. He assumed that f(0; ε) = 0, f ′(0; ε) =

−1, f(x; ε) < 0 for 0 < x ≤ 1 and g(0; ε) = b. To obtain the approximate solution by

a suitable construction of an integral equation, the author used two variable procedures

and proved that this solution is an approximation to some exact solution of the given

problem. The nature of the solution is compared based on the value of b in the following

ways:

1. If b is neither a positive integer nor zero, then the solution gives boundary layer at

each point with an exponentially small value in the interior of the domain.

2. If b is a positive integer, it is not possible to �nd approximate solutions to two-point

boundary value problems, such as those discussed by Ackerberg and O'Malley [3].

The author found that the approximate solution obtained by him was not valid for inter-

vals extending to∞, and the two variable procedure needs to be continued to higher-order
terms to �nd the correct approximate solution. In addition, he considered the exact solu-

tion of the problem (1.3.2) with f(x; ε) = −x and g(x; ε) = b+x and found that resonance

does not occur when b = n, where n is a non-negative integer and only occurs if b = n− ε
which contradicts the results in [3].

The problem (1.3.2) for the case l = 0, 1, 2, ... was examined by Kreiss and Parter [70], and

completed the results of Ackerberg and O'Malley [3]. For x 6= 0, they assumed xf(x, ε) <

0 with a single simple zero in (−a, b) where a, b > 0 for the function f : f(0, ε) = 0. The

basic estimates of the regularity of the solution y(x, ε) were established and showed that

‖y‖−a,b ≤ K0

[
‖y‖−δ,δ + |A|+ |B|

]
,

‖Dj
xy‖−a+δ,b−δ ≤ K0

[
‖y‖−δ,δ + ε (|A|+ |B|)

]
, j = 0, 1, ..., k + 1,

for 0 < ε ≤ ε0, ε0 = ε0(δ), k0(δ) be a constant and 0 < δ < min(a, b). They demonstrated

that the global behaviour of y(x, ε) is dependent upon its local behaviour and indicated

that if (y, εn) is a family of solutions of the problem (1.3.2) which are then uniformly

bounded, there is a series that converges uniformly on each subinterval [a + δ, b − δ]

along with their derivatives of order 1, 2, ..., k. The researchers analyse the nature and

position of the boundary layer and discovered that if {εn} satis�es condition B (a sequence

εn → 0+ satis�es condition B if there exist a constant K1 > 0 and functions {w1(x, εn)}

that satisfy (1.3.2) and w1(−a, εn) = 1, ‖w′1‖−a,b ≤ K1) and I =
b∫
a

f(x, 0)dx, then ε̄ > 0

exists such that:

1. for all A, B, and εn ≤ ε̄, y(x, εn) has a unique solution to the problem (1.3.2).

2. a reduced equation solution u(x) exists such that lim
n→∞

‖y(x, εn)− u‖−a+δ,b−δ = 0.

3. if I > 0, then u(b) = B and near x = b there is no boundary layer.

4. if I < 0, then u(a) = A and at x = a there is no boundary layer.
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5. if I = 0, then u(x) = λû(x), where λ = Af(−a,0)−Bf(b,0)û(b)

f(−a,0)−f(b,0)|û(b)|2 and û is the solution of

the reduced equation in the neighborhood of the origin.

In case (3) and (4), their results matched with the Ackerberg and O'Malley's [3] result,

but in case (5), the di�erent value of λ was yielded. For the exceptional case in which

l = −g(0,0)
f(0,0)

is a non-negative integer, the authors discussed some results and examples.

The singularly perturbed boundary value problems was considered by Matkowsky [86]

for the di�erential equation of the form

εy′′ + f(x; ε)y′ + g(x; ε)y = h(x; ε), −a < x < b,

y(−a; ε) = α(ε), y(b; ε) = β(ε),
(1.3.3)

where a, b > 0 and f changes sign at one or more points in the interval under consid-

eration. For such problems, the author proposed conditions for resonance occurrence

and derived uniformly valid asymptotic expansions. If w(x; ε) =
∞∑
j=0

wj(x)εj is the outer

expansion where w0(x) follows the reduced equation and at x = b (x = −a) if f(x; ε)

has positive (negative) boundary conditions, then functions wj(x) (j ≥ 1) are de�ned

by inserting w in (1.3.3) and separately equating the coe�cients of each power of ε to

zero. He demonstrated that resonance occurs when all the functions wj(x) in the outer

expansion are x-limited functions in the domain, including x = 0. In a series of examples,

in the case where l = −g(0,0)
f ′(0,0)

is a non-negative integer, the author solved the problem of

the triviality of the limiting solution within the interval. For the problems with f ′ > 0

on intervals containing the origin, the method proposed in the present work was found

to be inapplicable. By adding the variable ξ = x√
ε
and studying the resulting di�erential

equation in ξ, the author studied the behaviour of the solution in the neighborhood of

x = 0 whose solution is then matched as ξ → ±∞ to the outer solution in terms of

parabolic cylindrical functions Dn(ξ). Also, the author linked the resonance phenomenon

to a problem of eigenvalue and showed that the particular values that cause resonance

are the eigenvalues of some problem of homogeneous boundary value.

Howes [55] provided su�cient conditions for the existence of the solution of

εy′′ = f(t, y, y′, ε),

prescribing y(−1), y(1) and ∂f
∂y′

with t = 0. He assumed that, when f is continuous, the

solution to the reduced problem is well behaved and showed that the solution might have

the following depending on the behaviour of the turning point: (i) the boundary layer

at t = −1 or t = 1, (ii) boundary layers at both the end points and (iii) the interior

transition layer. He generated explicit boundary layer solutions and the estimates were

obtained for the transition layers of the solution.
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In order to create a priori estimates for the solution of the problem (1.3.2), Abrahamsson

[2] generalized the earlier work of Kreiss and Parter [70]. The results that he has obtained

depend on the value of a′(x) as follows:

Case 1. a′ < 0.

1. If c < 0, b < 0, then

‖y‖2
∞ ≤ K

(
max
|x|≤δ
|f |2 + ‖f‖2

[δ≤|x|≤1] + α2 + β2

)
where ‖.‖ is L2 norm and ε, δ is small but positive whereas for b > 0, l = b(0)

|a′(0)| ,

l = 0, 1, 2, ..., the corresponding estimate involves |f∞k |
2 near zero for k = 0 and

k = l + 1. By using some examples, the author further demonstrated that the

necessity of di�erentiability on f is only required in a neighborhood of the turning

point and can be eliminated if |f | = O (
√
ε), l > 0 for |x| ≤ δ.

2. If c = 0, in this case if b(0) > 0 and l 6= 1, 3, 5, ..., then

‖y‖2
∞ ≤ K

(
max0≤x≤δ |f(x)|2 + max0≤x≤δ

∣∣f (2k)(x)
∣∣+ ‖f‖2 + β2

)
,

provided α = 0 and f(x) = x2mg(x), 2m ≥ 2k, 2k−2 ≤ l ≤ 2k, whereas if b(0) > 0,

then there is a maximum principle for 0 ≤ x ≤ δ and a priori estimates hold good.

Case 2. a′ > 0.

In this case, if l 6= 1, 2, 3, ..., then solutions are de�ned beyond the neighborhood of the

turning point by convergence to the solution of the reduced equation, while the solution

and higher order derivatives are unbounded in the neighborhood of x = 0.

The case of resonance for the problem

ε d
2v
dx2

+ F (x, ε) dv
dx

+G(x, ε)v = 0, x ∈ (α, β),

v(α, ε) = A, v(β, ε) = B,

was considered by Sibuya [118], where F (x, 0) has �rst-order zero at x0, α < x0 < β, and[
∂f(x,0)
∂x

]
x=x0

< 0. Matkowsky [86] has shown that the solution v of the above problem

tends to zero in α < x < β as ε→ 0+, unless the coe�cients of the di�erential equation

satisfy a certain in�nite sequence of equalities. In some special cases, on the other hand,

it is known that if these conditions are met, the solution v has a �nite nonzero limit

in α < x < β as ε → 0+. The author has shown that this is generally valid as long

as the di�erential equation coe�cients in a certain region of the complex x-plane are

holomorphic. Error needs to be exponentially small for the problem under consideration,

but the divergent series that occur in the theory of the singularly perturbed di�erential

equations are known to generate an error smaller than the order of any power of ε only
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as ε → 0+. A Phragmen-Lindelof theorem has been shown to achieve this. Given the

sectors =j = {ε; aj < arg ε < bj, 0 < |ε| < ρ} (1 ≤ j ≤ v) and function δj(1 ≤ j ≤ v), the

author has shown that:

1. Uj=j = {ε; 0 < |ε| < ρ},

2. δj is holomorphic in =j,

3. δj is asymptotically zero as ε→ 0 in =j,

4. |δj(ε)− δk(ε)| ≤ c0 exp
{
−c1
|ε|λ

}
in =j ∩ =k for some positive number c0, c1 and λ,

whenever =j ∩ =k 6= ∅, we have |δj(ε)| ≤ c2 exp
{
−c1
|ε|λ

}
in =j for some positive

number c2. This result is used to demonstrate that the Matkowsky condition [86]

implies resonance in the sense of Kopell [69], if D0 is a disk with a center at x = 0,

i.e., D0 = {x; |x| < r0} for any r0 > 0.

The asymptotic solution of the linear boundary value problem of the form

ε2y′′ + [xp(x) + ε2f1(x, ε)] y′ + g1(x, ε)y = 0,

y(a) = A, y(b) = B, a < 0 < b,
(1.3.4)

was considered by Lewis [76] where p(x) < 0, p, f and g are analytical. In both resonant

and non-resonant cases, he studied the asymptotic nature of the solution of the compari-

son equation and found that small changes in one of the coe�cients in the equation could

lead to signi�cant changes in the solution. It showed that if −g1(0,0)
p(0)

/∈ N, then resonance

does not occur and O(εn) is the solution for closed subintervals of (a, b) for n ∈ N with

possible boundary layer behaviour at the end points. If −g1(0,0)
p(0)

∈ N, then, depending on

the nature of f1, g1 and p, resonance may or may not occur. Transformations of depen-

dent and independent variables are performed alternately in order to �nd the necessary

conditions for the occurrence of the resonance until (1.3.4) is reduced to an equation of

the form

ε2y′′ + [−x+ ε2mf(x, ε)] y′ + [βm(ε) + ε2m−2g(x, ε)] y = 0,

where m is an arbitrary positive integer and

βm(ε) =
2m−3∑
i=0

εici, a = a0 +O(ε2), b = b0 +O(ε2),

A = A0 +O(ε2), B = B0 +O(ε2).

A sequence of necessary conditions for resonance was generated by the author and found

equivalent to those proposed by Cook and Eckhaus [24]. The author provided a counter-

example to the result of Olver [104] on the occurrence of resonance, that is, an example

is given that is known to possess resonance but does not satisfy the conditions given in
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Olver [104] for su�ciency.

The su�ciency of the Matkowsky [86] condition concerning the di�erential equation

(1.3.2) was investigated by Lin [78] assuming that f(0, ε) = 0 is equivalent in ε, fx(0, ε) 6= 0

with f > 0 for x < 0 and f < 0 for x > 0. The author generalized the �ndings of Sibuya

[118] and considered the case where D is a disc containing the real interval [−a, b]. He

has shown that transformations take (1.3.2) to

εy′′ − 2xy′ + (p− 1 + δj(ε))y = 0

in each of the subdomains

x ∈ D, ε ∈ Sj = {ε : aj < arg ε < bj, 0 < |ε| < ρ0} (j = 1, 2, ..., v)

and thus

|δj(ε)| ≤ Hj exp
(
−r2
|ε|

)
for ε ∈ Sj

is obtained using the results of Sibuya [118]. These estimates of δj(ε) are not good enough

for resonance, since the radius r of such a disc is generally small. Using co-homological

methods and the generalization of the Phragmen-Lindelof theorem, δj(ε) estimates are

enhanced.

Lange and Miura [73] considered the �rst-order turning point problem

ε2y′′(x) + q(x)y(x) + α(x)y′(x− 1) + β(x)y(x− 1) = ψ(x),

subject to boundary conditions y(x) = φ(x) on −1 ≤ x ≤ 0, y(l) = γ, for q, α, β, φ,

ψ given as continuously di�erentiable functions of x on [0, l], γ, and l > 1 are constants

independent of ε and q(x) > 0 to consider only rapid oscillations. The coe�cient q(x)

has the form q(x) = (ξ − x)p(x) where p(x) has constant sign in 0 < x < l < 2 and

ξ ∈ (0, l − 1). Thus, ξ is a �rst-order turning point. To cover such problems, methods

from [72, 74] are extended by a matching across the turning point. Due to the inclusion

of the delay terms, the non-uniform behaviour at ξ = x as ε → 0 implied similar non-

uniformities at x = ξ + 1.

Donnell [103] provided su�cient conditions for the solution to exist and examined its

asymptotic behaviour as ε→ 0+ for the following nonlinear boundary value problem

εy′′ = f(t, y, y′), −1 < t < 1, y(−1) = A, y(1) = B,

when some or all components have a turning point at t = 0, where y, f, A, and B are in

<n. If ∂fi
∂y′i

vanishes at t = 0, some or all of the components possess a turning point. The
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relevant reduced problem

f(t, y, y′) = 0, −1 < t < 1, y(−1) = A, or y(1) = B,

(or perhaps none of these) is assumed to have a smooth solution u = u(t) and the reduced

solution will satisfy

0 = fi
(
t, y1, ..., yi−1, ui, yi+1, ..., yn, y

′
1, ..., y

′
i−1, u

′
i, y
′
i+1, ..., y

′
n

)
for t in [−1, 1], yj to be de�ned in some region Dj, and

∣∣y′j∣∣ < ∞, j 6= i. Based on the

behaviour of ∂fi
∂y′i

at the turning point t = 0, the ith component of the solution yi(t, ε) is

shown to exhibit two types of behaviour. If ∂fi
∂y′i

changes its sign in passing through t = 0,

yi(t, ε) will behave di�erently on opposite sides of t = 0 and the change will take place

in the transition layer. In this case, the component yi(t, ε) is uniformly approximated

to order ε at the interval to the left of the transition layer by the ith component of the

reduced solution satisfying the condition of the left hand boundary and to the right of the

layer yi(t, ε) behaves to order ε as the ith component of the reduced solution satisfying

the condition of the right hand boundary. If ∂fi
∂y′i

has the same sign for t in (−1, 1), then

yi(t, ε) has a boundary layer at one of the end points in the ith component, but no interior

layer exists. In this case the position of the boundary layer depends on the sign of ∂fi
∂y′i

.

If ∂fi
∂y′i

is negative (with the exception of the turning point), the layer appears at the end

point on the left, and at the right if positive.

By comparing uniform approximations for the pure singular point problem and the turn-

ing point problem, Wazwaz and Hanson [136] constructed asymptotic approximations.

The general solution u = u(x; s, ε) of the second-order ordinary di�erential equation was

analysed with the boundary conditions of the mixed type:

1
2

exp(x; ε)uxx + x(a− x)q(x; ε)ux = su, 0 < x < b,

u(0; s, ε) = u(0), ux(b; s, ε) = ux(b),
(1.3.5)

where 0 < a < b, p > 0 and q > 0. As ε→ 0, the functions p(x; ε) and q(x; ε) are positive,

analytic and have uniform asymptotic expansions of the form

p(x; ε) ∼
∞∑
m=0

εmpm(x), and q(x; ε) ∼
∞∑
m=0

εmqm(x).

Here, x = a is a second-order turning point and x = 0 is a regular singular point. For

a population that increases logistically in the absence of random perturbations, but is

subject to demographic type stochasticity, the study of the above type of problem was

inspired by the study of the �rst passage time problem. In the form of uniform reduction

theorem [106], a uniform approximation about the singular point is constructed in such
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a way that the approximation is uniformly true in the subdomain (0, c1), where c1 is

any constant in (0, a). The two linear combinations of Whittaker functions is generated

by this approximation with one exponentially small function (W1(k; z)) and the second

with only exponentially large terms (W2(k; z)). When x ∈ [c2, b), where c2 is another

constant in (0, a), the uniform approximation of the turning point obtained in terms of

parabolic cylindrical functions is uniformly valid. An interval in which both expansions

overlap is obtained by choosing c2 < c1. In an overlap region, strictly dominant and

recessive components of both restricted uniform approximations are formally matched

independently to produce a complete approximation of the general solution.

An asymptotic study of the following singularly perturbed second-order ordinary di�er-

ential equation was proposed by Wazwaz [133] with two second-order interior turning

points

εp(x)uxx + 2(x− a)(b− x)q(x)ux − 2su = 0, 0 < x < 1, 0 < a < b < 1,

for appropriate boundary conditions. The uniform reduction theorem [3] is used to con-

struct �rst-order uniform asymptotic approximations in ε. Firstly, an approximation is

obtained over the subdomain x > a that covers x = b but excludes x = a, which is

linear combination of parabolic cylindrical functions U and V . The argument used for

U and V , at point x = b, is the stretched variable Z. As it breaks down at x = a, the

approximation fails to cover the entire domain. A �rst-order approximation which is valid

in the subdomain x < b, covering x = a but excluding x = b, is constructed essentially

analogous to the derivation of the previous case. This is also a linear combination of U

and V at the turning point x = a with stretched variable Y . At x = b, the resultant

approximation breaks down. Using the overlapping domain of validity between x = a

and x = b, the exponential and non-exponential components of leading and �rst-order

terms of both approximations are matched. The author also believed that it is possible

to treat the given problem as an eigenvalue problem with s being the parameter of eigen-

value. The matched approximation approach is used to study the resonance parameters

associated with each turning point and the combined e�ect of both turning points. It

turns out that the key eigenvalues are unique, although there are two turning points.

An explicit asymptotic approximation of the solution of the problem (1.3.1) was presented

by Harris and Shao [50] for su�ciently small ε. The method of upper solutions (β(x, ε))

and lower solutions (α(x, ε)) that connect the solutions is used to derive these asymp-

totic approximations. The approximations demonstrate that the solution is capable of

showing boundary layers at one or both end points or an interior shock layer for which

lim
ε→0+

{β(x, ε)− α(x, ε)} = 0 uniformly covers the entire domain.
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Wazwaz [135] examined an asymptotic analysis of the problem

(b2 − t2) [εp(t)utt + (t2 − a2)q(t)ut] = su,

with a pair of regular singular points t = ±b and a pair of interior second-order turning

points at t = ±a. Four leading-order uniform approximations were constructed by the

author, each restricted to a region containing one critical point, and then neighboring

approximations are formally matched independently on an overlapping domain that yields

an asymptotic approximation to leading order of the general solution.

In [134], Wazwaz extended above mentioned study in the case of the arbitrary number of

turning points The problem

εf(x)u′′ + 2P (x)q(x)u′ + su = 0, x ∈ (0, 1)

was known to be u(0), u(1) prescribed. f(x) and q(x) are assumed to be positive and

bounded away from zero, ε is a small positive parameter, P (x) is a polynomial with

an arbitrary number of real simple zeros and s is a variable quantity that is known

as an eigenvalue. To construct a set of asymptotic representations that are formally

matched on overlapping domains, the uniform reduction method [106] is used. In the large

asymptotic argument of the parabolic cylindrical functions, the exponential and algebraic

terms emerging are separately matched and the resulting asymptotic representations are

merged into a single composite approximation.

Skinner [119] has considered the turning point problem

ε2y′′ + [xa(x) + εb(x) + ε2c(x, ε)] y = 0, x ∈ [−1, 1],

where a(x) > 0 on [−1, 1] and a(x), b(x), c(x, ε) are perfectly smooth functions. Asymp-

totic approximations are constructed using a formal method of matched asymptotic ex-

pansions [71] by incorporating a transformation given by

y(x, ε) = exp

[
i
ε

x∫
0

√
|t| a(t)dt

]
z(x, ε).

A formal composite expansion is constructed by generating few terms in the formal inner

and outer expansions. The problem of proving that these formal expansions for z(x, ε)

and the corresponding asymptotic approximations for y(x, ε) are uniformly valid is being

investigated.

Nakano [95] studied third-order linear singularly perturbed ordinary di�erential equation
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ε3y′′′ =
3∑

k=1

ε3−kpk
(
x− ε

x2

)k
y3−k; (0 < |x| ≤ x0, 0 < ε ≤ ε0) , (1.3.6)

where x0 and ε0 are positive constants, x is a complex variable and p1 = a1 + a2 + a3,

p2 = −(a1a2 + a2a3 + a3a1) and p3 = a1a2a3∀ak 6= 0, a1 < a2 < a3. Here, x = 0

is called a turning singular point because it is turning as well as singular point of the

problem (1.3.6). Di�erential equations with turning point are de�ned by their character-

istic polygon (introduced by Sibuya [58]), but in the case of turning singular points, this

approach is unsuccessful, so the present work adopts a modi�ed method. The domain

is subdivided into the inner and outer region, reduced equation is obtained, and inter-

nal and external WKB solutions are developed. The relationship between the external

and internal solution, represented by a matrix called the matching matrix, is determined

by taking appropriate points belonging to both (inner and outer) regions. The author

demonstrates that the maximum existence regions of the inner and outer solutions are

bounded by stokes curves. The boundaries of the existence regions of the outer solution

are determined by those of the maximum existence region of the inner solutions, which

are called canonical regions. Nakano [96] has used the same method to test the nth order

linear di�erential equation

εnhy(n) =
3∑

k=1

ε(n−k)hpk(x, ε)y
n−k; (0 < |x| ≤ x0, 0 < ε ≤ ε0) , (1.3.7)

that satis�es the same conditions as in [95] and coe�cients pk(x, ε) = pk

(
xm − εl

xr

)k
,

k = 1, 2, ..., n where m, l and r are positive integers such that h > (m+1)l
(m+r)

and pk satisfy

conditions that ensure that the characteristic equation of (1.3.7) has characteristic roots

which coincide with x = 0.

The di�erential equation

εy′′ + a(x)y′ + b(x)y = 0, y(x+) = A, y(x−) = B,

x ∈ [x−, x+], x− < 0 < x+,

was considered by Wong and Yang [138] where a(x) and b(x) are su�ciently smooth near

x = 0 and behave asymptotically as αx and β respectively, for some real numbers, α and

β. The authors addressed the case where β
α
is not a positive integer and α > 0. The

method proposed in this paper is similar to that given by Bender and Orszag [13], who

in the typical case applied the method of matched asymptotic expansion when x− = −1

and x+ = 1 to construct a fairly straightforward explicit asymptotic solution involving

parabolic cylinder functions. However, by transforming the given di�erential equation to

the Liouville form, converting it to an integral equation and using the method of successive
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approximations, more rigorous evidence is given. The authors viewed the case of α < 0

and β
α
a non-negative integer in the companion paper [137]. The original di�erential

equation in y and x is translated into variables U and t as

M [U ] = l1(ε, t)y′′U + l2(ε, t)U,

where M is a second-order di�erential operator whose coe�cients are formulated from

those of the original equation. The equation M [U ] = 0 is solved in terms of parabolic

cylinder functions and the asymptotic behaviour of the functions l1(ε, t) and l2(ε, t) as

ε → 0 tending to zero is obtained. By means of the method of parameter variance, the

non-homogeneous equation is converted into an integral equation, which is further solved

by method of successive approximation. The �nal outcome gives a uniform asymptotic

approximation to the unique solution y(x) of the original problem as ε→ 0 on [x−, x+].

Ackerberg-O'Malley resonance [3] was revisited by Wong and Yang [139] by obtaining

simple uniformly valid asymptotic expansions for the solution y when:

1. α > 0, β
α

= 1, 2, ..., or

2. α < 0, β
α

= 0,−1,−2, ....

They showed that in both the cases, the solution will produce resonance as the solution

can expand exponentially in a subinterval of [x−, x+] for the case (1), while in a subinterval

of [x−, x+] it is not exponentially small for the case (2).

In singularly perturbed advection-di�usion-reaction equations, Knaub and O'Malley [68]

examined the motion of internal layers. For a small positive parameter ε, which tends

to zero on a �nite spatial domain, the authors obtained the asymptotic solution of the

following PDE with a single extremely slowly moving internal layer

ut = ε2uxx + εg(u)ux + h(u),

where g, h are smooth, uL, uR(uL < uR) satis�es h(uL) = h(uR) = 0. Apart from this

smooth and compatible initial data, uL ≤ u(x, 0) ≤ uR for 0 < x < 1 constant Dirichlet

data u(0, t) = uL, u(1, t) = uR for t > 0 is prescribed. A monotonically increasing shock

pro�le function up(z) depending upon the O(ε)-stretched coordinate z = 1
ε

(x− xε(σ)) ,

centered at a slowly moving shock location xε(σ), is required to approximate the limiting

solution after a suitable interval of time. For advection-di�usion and reaction-di�usion

equations, the condition for the existence of the pro�le function up(z) is given. The

motion equation of the internal layer position is also approximately derived and the two

cases, namely exponential asymptotics and algebraic asymptotics, are analysed.

Yang [140] investigated a singular perturbation problem with two second-order turning
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points given by

εp(x)uxx + 2(x− a)(b− x)q(x)ux − 2su = 0,

0 < x < 1, 0 < a < b < 1,
(1.3.8)

where p(x) and q(x) are su�ciently smooth and strictly positive functions. Two second-

order turning points are at x = a and x = b on the interval (0, 1). For the construction

of two linearly independent solutions for the Eq. (1.3.8) on each of the subintervals (0, b)

and (a, 1), the author used his previous results regarding the problem with one turning

point [138, 139]. A matching technique is employed to obtain a uniform asymptotic

solution for Eq. (1.3.8) over the entire interval (0, 1). The matching occurs in the overlap

interval (a, b). Only the dominant terms are kept in the asymptotic approximations of the

solution of the boundary value problem for determining the value of the constants involved

and boundary conditions are applied to it. The author derived a uniform asymptotic

expansion for the solution over many di�erent parts of the interval [0, 1], in order to

clearly derive the asymptotic behaviour. As ε → 0, the solution approximates to the

solution of the reduced problem

(x− a)(b− x)q(x)ux − 2su = 0, u(0) = k1, x ∈ [0, a).

Then, near the turning point x = a, an interior layer of thickness O(
√
ε) occurs. The

solution is exponentially small in (a, 1) and near the endpoint x = 1 a boundary layer of

thickness O(
√
ε) appears.

1.3.2 Numerical Approach

This section discusses the numerical techniques developed over a period of time to �nd

an approximate solution of the singularly perturbed turning point problems. In addition,

it is presumed that h denotes the step-size in the spatial direction, unless or otherwise

speci�ed.

Hemker [52] presented numerical treatment of the two-point boundary value problem

εy′′(x) + f(x)y′(x)− g(x)y = k(x), y(a) = α, y(b) = β,

where the function g(x) ≥ 0. The �rst derivative y′(x) is approximated by a weighted

average of the forward and backward divided di�erences in the �nite-di�erence discreti-

sation and y′′(x) is approximated by the standard three-point di�erence operator. By

choosing the mesh spacing and the weight factors properly at each mesh point, the au-

thor acquired a technique that combined the advantage of known methods with a low

convergence order.
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Miranker and Morreeuw [92] performed a semi-analytic numerical study of the sti� bound-

ary value problem

εy′′ + f(x)y′ − g(x)y = h(x), 0 < x < 1, y(a) = α, y(b) = β,

where f(x) and g(x) are smooth functions. The number of turning points xi is assumed

to be �nite, i.e. f(xi) = 0 but f ′(xi) 6= 0 and g(xi)
f(xi)

is non-integer. A combination of

di�erential approximation and analytical continuation theory that relates the solutions

on both sides of the turning point solves the given problem.

Barrett [10] expanded the approach of upwind di�erences to cover internal turning point

problems and outlined some of the reasons behind the numerical di�culties that Dorr and

Parter [27] and others had previously experienced. Proposed approximations of �nite-

di�erence are considered accurate to exponentially small terms. The di�erence between

homogeneous and non-homogeneous problems is also shown to be important.

For the following turning point problem,

εu′′(x) + axu′(x)− bu(x) = f(x), x ∈ (−1, 1), u(−1) = α, u(1) = β,

where a, b, ε ∈ <−, λ = b
a
/∈ Z and f(x) is su�ciently smooth in C5(−1, 1), Farrell [32]

proved ε-uniform convergence of number of �nite-di�erence schemes. The internal layer

of the cusp form exhibits these types of problems at x = 0. The di�erence scheme is

described by

Lhui ≡ εσiD+D−ui + xiaD0ui − bui = fi, i = 1, 2, ..., n− 1,

where n is even, fi = f(xi) and σi = σi
(
axih

2ε

)
is a positive parameter under consid-

eration to be de�ned based on the form of �nite-di�erence scheme. σi ≥ a|xi|h
2ε

and

|σi − 1| ≤ C a|xi|h
2ε

are assumed such that the scheme becomes of a positive type and sat-

is�es maximum principle. When applied to the turning point problem, the number of

�nite-di�erence schemes, including upwinding, exponential �tting and Hemker's scheme,

was found to be uniformly convergent. He discovered that |u(xi)− ui| ≤ Chmin(λ, 4
5

) is for

upwinding and Hemker's scheme while |u(xi)− ui| ≤ Chmin(λ,1) is for exponential �tting.

In [33, 34], Farrell suggested suitable conditions for uniform convergence of various dif-

ference schemes for singularly perturbed turning and non-turning point problems.

Kellog [65] applied Allen-Southwell [5] exponentially �tted �nite-di�erence numerical

scheme to �nd numerical solution of the singular perturbation problem

−εu′′ + pu′ + qu = f, −1 < x < 1,

25



1.3 Turning Point Problems

with u(±1) prescribed, q > 0 and p vanishing at a �nite number of points in the domain

called stagnation points or turning points. For the proposed scheme, such hypotheses are

made and error estimates are obtained, which are known to be uniformly convergent.

Liseikin [83] has developed a special di�erence net on non-uniform grids that are com-

pressed in the boundary layer region of the turning point problems

Lu ≡ ε2u′′ + xa(x)u′ + c(x)u = f(x), −1 < x < 1, u(0) = u(1) = 0,

and Lu = f, −1 < x < 1, u(−1) = u(1) = 0, with a(x) ≥ a0 > 0 and c(x) ≥ c0 > 0.

With no domain constraint of f(0) and c(0)
a(0)

, it has been shown that the simplest monotone

scheme on the resulting net converges uniformly for �rst-order accuracy with respect

to the perturbation parameter. In addition, Liseikin [84] studied external and internal

boundary layers of second-order two-point boundary value problems and demonstrated

results on a transformation leading to uniformly convergent solutions.

Berger et al. [14] derived a priori estimates and presented a numerical solution with turn-

ing points and Dirichlet type boundary conditions for the following two-point boundary

value problem

Ly ≡ −εy′′(x) + p(x)y′(x)− q(x)y(x) = f(x), −1 < x < 1,

y(−1) = d1, y(−1) = d1, y(1) = d2.
(1.3.9)

Here, d1 and d2 are given constants, q and f are required to be in C1[−1, 1], p is assumed

to be in C2[−1, 1], p is allowed to have a �nite number of zeros located at the points

z1, ..., zr in (−1, 1) and q(x) is assumed to be positive to exclude the so-called resonance

case. As ε → 0+, the authors have shown that the behaviour of the solution y(x) near

a turning point zi depends upon the sign of the constant βi = q(xi)
p′(zi)

. They showed that

the study of the problem with an arbitrary number of turning points can be reduced to

one turning point through some preliminary observations concerning (1.3.9) located at

x = 0. They proved that the solution y(x) is smooth near x = 0 for β < 0, on the other

hand if there is an interior layer at x = 0 for β > 0, the nature of which depends on the

nature of β. For y(x) and its derivatives, priori bounds are proven. In general, y is seen

to have a boundary layer at x = −1(1) if and only if p(−1) > 0(p(1) < 0). The authors

used Mistikawy and Werle [31] scheme for the numerical approximation of the solution

with some modi�cations. They proved that for the proposed numerical scheme; (i) O(h)

accuracy is obtained uniformly in ε for β < 0 (ii) O(h) outside the turning point region

for β > 0 while in the turning point region it is O
(
h ln 6

ch2

)
for β = 1 and O(hβ + h)

whenever β > 0, β 6= 1.

Farrell [35] gave adequate conditions for uniform convergence of a di�erence scheme for

singularly perturbed turning point problem that are met by a broad class of schemes and
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developed a class of di�erence schemes for the problem presented. The problem (1.3.9)

with single turning point at the origin was considered by the author. The characteristic

parameter β is treated as a non-integer. If u(x) is the solution of the Eq. (1.3.9) and uhi
is the solution of

Lhεu
h
i ≡ ε±i D+D−u

h
i + ahiD±u

h
i − bhi uhi = fhi , i ∈ (N,N), uh−N = 0 = uhN ,

it is proved that the coe�cients ε±i , a
h
i = αia(xi), b

h
i = βi(xi) and fhi are bounded such

that the scheme is uniformly stable, i.e.,

ε±i > 0, αi ≥ α > 0, βi ≥ β > 0,
∣∣ahi − a(xi)

∣∣ ≤ Ch,∣∣bhi − b(xi)∣∣ ≤ Ch,
∣∣fhi − f(xi)

∣∣ ≤ Ch,
∣∣ε±i − ε∣∣ ≤ Ch (|a(xi)|+ h) ;

the error estimate is given by ε ≤ ε0,
∣∣uε(xi)− uhi ∣∣ ≤ Chmin(β,1), −1 ≤ xi ≤ 1, for h ≤ h0.

The author showed that some well known schemes, e.g., Il'in-Allen-Southwell scheme

[5, 57], Abrahamsson scheme [1], complete exponential �tting schemes, simple upwind

scheme, Samarskii scheme, ful�ll the above-mentioned su�ciency condition, while these

estimates are not satis�ed by centered di�erences and scheme proposed by Abrahamsson

[1] for nonlinear problems. It is found that the rate min(β, 1) is the best attainable

convergence rate for a general scheme of this type (that is, those satisfying su�ciency

condition). Furthermore, Farrell gave a uniform convergence result for a turning point

problem in [36].

For singularly perturbed convection-di�usion equation with turning points, Hedstrom

and Howes [51] presented domain decomposition methods. The problem

−xu′ = ε∆u(x) on Ω,

which is a square in the plane, was considered. Asymptotic analysis is used to show that

the solution of the problem almost satis�es the reduced equation ux = 0 in subdomains

that are at least a distance of C
√
ε from ∂Ω, while boundary layers which exist in the

vicinity of ∂Ω depending on the boundary values. In order to determine the partition into

subdomains and to suggest the basic functions to be used in a �nite-element formulation

of this problem, the authors used asymptotic information.

Vulanovic [126] used the continuous solution properties to generate numerical methods

for the problem of singularly disturbed mildly nonlinear turning points. On non-uniform

meshes, he used a �nite-di�erence scheme and obtained comparison results using various

methods.

Vulanovic developed a L1-stable �nite-di�erence scheme for linear second-order singu-

larly perturbed turning point problem in [127] by using continuous change in upwinding
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technique based on cell Reynolds number.

The results obtained in [126] was extended by Vulanovic and Lin [129] to solve a quasilin-

ear singularly perturbed boundary value problem with a turning point of the attractive

type for developing a robust numerical scheme.

Lin [79] provided numerical treatment of quasilinear singularly perturbed boundary value

problem with turning point and Dirichlet data

Ly = εy′′ + b(x, y)y′ − c(x, y) = 0, −1 < x < 1, y(−1) = A, y(1) = B, (1.3.10)

where b(x, y), c(x, y) ∈ C2 ([−1, 1]×<), b(0, y) = 0, bx(0, y) < 0 for |y| ≤ r+1, b(x, y) 6= 0

for |y| ≤ r+1 and x 6= 0, and c(x, y) ≥ c0 > 0 on [−1, 1]×<. Here, c0 is a positive constant

and r is a �nite constant to be determined. A numerical method proposed by the author

is convergent in the maximum norm for arbitrary ε > 0. First, bounds on the solution and

its derivatives are obtained for the problem (1.3.10) for the construction of the numerical

scheme and then an initial value problem is developed that approximates the problem

(1.3.10). Afterwards, to solve the initial problem, a �nite-di�erence scheme on non-

uniform mesh is constructed and the error estimate max−N≤i≤N
∣∣y(xi)− uhi

∣∣ ≤ Chs/(1+r)

is obtained. An improvement is made in the error estimation by indicating that if there

exist a method solving (1.3.10) and the order of convergence O(hs/εr), s > 0, r > 0,

then this method can be used for ε > hs/(1+r), while the above algorithm can be used for

ε ≤ hs/(1+r), and the error estimate in that case will be O
(
hs/(1+r)

)
.

In [80], a uniformly convergent di�erence scheme was constructed for a semilinear turning

point problem. The author considered the following boundary value problem

εu′′ + p(x)u′ − f(x, u) = 0, −1 < x < 1, u(−1) = A, u(1) = B,

where in the domains [−1, 1] and [−1, 1] × <, the functions p(x) and f(x, u) are su�-

ciently smooth under the assumption fu(x, u) ≥ f ∗ > 0, (x, u) ∈ [−1, 1] × <; p(0) = 0,

p′(0) < 0 and p(x) 6= 0 when x 6= 0. For the nonlinear di�erential equation, taking

these assumptions into account, an iterative process converging independently of ε is

constructed.

For the following linear second-order singularly perturbed BVPs with turning points,

Lopez [85] discussed the stability of a three point scheme

εy′′(t) + s(t)y′(t) + c(t)y(t) = f(t), t ∈ [a, b], y(a) = η, y(b) = ζ,

with s(t), c(t), f(t) be continuous functions on the integration interval [a, b]; c(t) ≤ 0 and
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1.3 Turning Point Problems

s(t) may change sign. The author considered the form

yn+1 − γnyn + βnyn−1 = bn, n = 1, ..., N,

to be a three-point scheme (with variable step size) where y0 = η, yN+1 = ζ, t0 = a,

tn+1 = b, yn ∼= y(tn) with tn = tn−1 + hn−1, hn−1 for n = 1, ..., N + 1. The values βn, bn,

γn for n = 1, ..., N are given by

βn =
hn
hn−1

2ε− snhn
2ε+ snhn−1

, bn =
hn (hn + hn−1)

(2ε+ snhn−1)
fn,

γn =
(hn + hn−1) [2ε+ sn (hn−1 − hn)− cnhnhn−1]

hn−1 (2ε+ snhn−1)
.

The stability analysis of the above scheme is carried out by studying the stability of a LU

factorization for the coe�cient matrix of the above tridiagonal system, which depends on

the diagonal term αn of the matrix L since it is assumed that diagonal terms of U is 1.

In addition, the study of behaviour of the diagonal terms of L is equivalent to the study

of the solution of the discrete Riccati equation βnxn+1xn−γnxn+1 +1 = 0 for n = 1, ..., N

where x0 = 0. A good mesh selection strategy for the treatment of boundary and interior

layers was also proposed by the author, which provides a mesh on which the three-point

system is stable.

Vulanovic and Farrell [128] presented numerical analysis of the following attractive mul-

tiple boundary turning point problem

Lu := −εu′′ − xkb(x)u′ + c(x)u = f(x), x ∈ I = [0, 1], (u(0), u(1)) = [U0, U1],

(1.3.11)

where U0 and U1 are given numbers. They further presumed that k = 2 or k ∈ [3,∞);

b, c, f ∈ C3(I),b(x) ≥ b0 > 0,x ∈ I; c(x) ≥ 0,x ∈ I; c(0) > 0, x ∈ I; a(x) := xkb(x). Esti-

mates on the derivatives of the solution uε are given after proving existence and uniqueness

of the solution, which are further de�ned following a more precise representation of the

solution

uε(x) = wvε(x) + zε(x), x ∈ I, vε(x) = exp(−µx), µ =
√

c(0)
ε
, |w| ≤M,∣∣∣z(i)

ε (x)
∣∣∣ ≤M

(
1 + ε(1−i)/2 exp

(
−mx√

ε

))
, i = 0, 1, 2, 3, x ∈ I,

which are used to derive the error estimates. A �rst-order exponentially �tted �nite-
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di�erence scheme is constructed using special non-equidistant mesh that is dense near

the origin. The mesh points are given by

λ(t) =

ψ(t) :=
√
ε t
γ−t , t ∈ [0, α],

Π(t) := β(t− α)3 + ψ′′(a)
2

(t− α)2 + ψ′(α)(t− α) + ψ(a), t ∈ [α, 1],

xi = λ(ti), ti = i
n
, i = 0(1)n (nodal points), where α is an arbitrary number from (0, 1)

and β is determined by Π(1) = 1, λ = α + 6
√
ε, and ψ is a modi�cation of the inverse

boundary layer function vε. ψ is expanded by a polynomial at the rest of the interval, so

that λ ∈ C2(I) is monotonous. The discretisation of the problem (1.3.11) for the modi�ed

scheme is obtained at mid points xi+1/2 = xi +
hi+1

2
, 1(1)n− 1. The error estimate for the

improved scheme is O(
√
εn−1 + n−2) with n mesh points, and is accurate for

√
ε ≤ n−1

in the second-order. However, prior information about the behaviour of the continuous

solution was required by this method.

Clavero and Lisbona [23] studied the following singularly perturbed nonlinear di�erential

equations with attractive turning point

−εu′′(x) + (xu(x))′ + a(x)u(x) = f(x), −1 < x < 1, u(−1) = A, u(1) = B,

−εy′′(x) + (xy(x))′ + b(x, y(x)) = 0, −1 < x < 1, y(−1) = A, y(1) = B,

where a(x) ≥ 1, a(0) ≥ 1 + δ, by(x, y) ≥ 1 + δ and δ > 0. Using the results of Berger et

al. [14], though they did not use parabolic cylindrical functions, bounds on the solution

and its derivatives are obtained. To study the case of the semilinear problem, techniques

used for linear problems are generalized. For a family of �nite-di�erence schemes on "

locally almost regular " meshes, uniform convergence is proven. Uniform convergence of

the simple upwind system (in L1-norm) is proved and then this property is transferred to

a whole family of schemes similar to upwind schemes, that is Samarskii and exponential

�tted methods, by arguments of continuity. The authors gave numerical results using

exponentially �tted schemes for the integration of linear problem and the problem of

Samarskii's semilinear scheme, and using very few points in the integration mesh, good

numerical approximations are obtained in the turning point region. A uniform initial mesh

is originally used and then modi�ed by means of an iterative equi-distribution algorithm

of arc length using piecewise linear interpolation of the previous discrete solution.

For second-order ordinary di�erential equations exhibiting twin boundary layers, Natesan

and Ramanujam [99] presented a numerical method for the following singularly perturbed

turning point problem

εu′′(x) + a(x)u′(x)− b(x)u(x) = f(x), x ∈ D = (−1, 1), u(−1) = A, u(1) = B,

(1.3.12)
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where a, b and f are su�ciently smooth functions. Further to

a(0) = 0, a′(0) < 0, b(x) ≥ b(0) > 0, (1.3.13)

to eliminate the case of resonance. It is assumed that

|a′(x)| ≥ |a′(0)/2| , x ∈ D := [−1, 1]. (1.3.14)

is used to make sure that there are no other turning points in the interval [−1, 1]. TPP

(1.3.12) has a unique solution with two boundary layers at x = −1 and x = 1 under

the above conditions. The interval D is divided into four sub-intervals to solve the

above problem, namely, D1 = [−1,−1 + Kε], D2 = [−1 + Kε,−δ], D3 = [δ, 1 − Kε],

D4 = [1 − Kε, 1], where δ > 0 is a small number, K such that Kε � 1 and Kε is

the width or thickness of the boundary layers which are close to x = −1 and x = 1.

Therefore, two types of problems are obtained, namely inner and outer region problems

involving a four di�erential equation scheme. Inner region problems are solved by using

exponentially �tted di�erence schemes (EFD) [26], whereas classical upwind di�erence

schemes solve outer region problems. By considering the asymptotic expansion solution

u(x) of Eq. (1.3.12) as given in [2], boundary values for inner and outer region problems

are obtained. Finally, outer and inner solutions are combined over the interval [−1, 1]

to obtain the approximate solution to the original problem. This is an iterative method

based on the terminal points −1 +Kε and 1−Kε.

The problem (1.3.12)-(1.3.14) was solved by Natesan and Ramanujam [98] using initial

value technique (IVT) originally developed in [41] to solve the singularly perturbed non-

turning point problem. For this reason, the domain of de�nition of ODE, that is [−1, 1],

is divided into three disjoint sub-intervals: D1 =
[
−1, −1

2

]
, D2 =

(−1
2
, 1

2

)
, and D3 =[

1
2
, 1
]
. First of all, a reduced problem is solved, the solution of which u0 is used as

an approximation to the solution of the problem on
(−1

2
, 1

2

)
. The value of the solution

of the reduced problem at x = −1
2
, 1

2
is taken as boundary condition for ODE (1.3.12)

on D1 and D3. The given di�erential equation is then solved separately by IVT on

D1 and D3. The approximate solution is obtained by combining the solutions of the

reduced problem, the initial value problem and the terminal value problem. If v01i is the

numerical solution of (1.3.12) on
[
−1, −1

2

]
and v02i on

[
1
2
, 1
]
by applying the EFD scheme,

then u0(xi) + (A − u0(−1))v01i, u0(xi), u0(xi) + (B − u0(1))v02i are approximations to

u(x), then the solution of TPP at the respective intervals
[
−1, −1

2

]
,
(−1

2
, 1

2

)
, and

[
1
2
, 1
]

yields the following error estimates

|u(xi)− [u0(xi) + (A− u0(−1))v01i]| ≤ C(h+ ε), xi ∈
[
−1, −1

2

]
,

|u(xi)− u0(xi)| ≤ Cε, xi ∈
(−1

2
, 1

2

)
,

|u(xi)− [u0(xi) + (B − u0(1))v02i]| ≤ C(h+ ε), xi ∈
[

1
2
, 1
]
.
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Also, the implementation of the method for parallel architecture was discussed by the

author.

For the numerical solution of singularly perturbed semilinear convection-di�usion prob-

lems with attractive turning points, Linss and Vulanovic [82] developed two �nite-di�erence

schemes (one was �rst-order accurate and the other was second-order accurate). For a

�nite-di�erence scheme, the authors used the generalization of the hybrid stability in-

equality proposed by Andreev and Savin [7] to discretise a linear singularly perturbed

boundary value problem with a small positive perturbation parameter ε. It is shown that

the maximum nodal error is bounded by a special weighted l1-type norm of the truncation

error for both the schemes and ε-uniform piecewise convergence is set on the Shishkin

mesh using this. They considered the same problem in [81] and �rstly split the solution

into a regular solution component and a boundary layer component with sharp estimates

for their derivatives up to the third-order and then used this decomposition to evalu-

ate the convergence on Shishkin mesh of the proposed upwind �nite-di�erence scheme.

For the proposed scheme using hybrid stability inequality, �rst-order convergence in the

discrete maximum norm is proven.

For the parabolic problem

Lu(x, t) = f(x, t), (x, t) ∈ G, u(x, t) = ϕ(x, t), (x, t) ∈ S = S0 ∪ SL,

Shishkin [116] proposed di�erence schemes where

L ≡ ε1+αL2 + L1, L1 ≡ b(x, t)
∂

∂x
− c(x, t)− p(x, t) ∂

∂t
, and L2 ≡ a(x, t)

∂2

∂x2
.

The coe�cient b(x, t) occurring in the operator L1 satis�es either the condition

b(x, t) = −xαb1(x, t), (x, t) ∈ G,

or the condition

b(x, t) = xαb1(x, t), (x, t) ∈ G; b1
0 ≤ b1(x, t) ≤ b10, b1

0 > 0, (1.3.15)

and the functions a(x, t), b1(x, t), c(x, t), p(x, t), f(x, t) and ϕ(x, t) are su�ciently smooth

on G and the sides of G, respectively. The ϕ(x, t) is a continuous function on S, 0 < a0 ≤
a(x.t) ≤ a0, p0 ≤ p(x.t) ≤ p0, c(x, t) ≥ 0 and the parameter ε is set to arbitrary values in

the half-open interval (0, 1]; S0 = {(x, t) : x ∈ D, t = 0}, SL = SL1 ∪ SL2 where SL1 and SL2
are the left and right parts of the lateral surface SL, α is a non-negative number and the

behaviour of the solution in the neighborhood of the boundary x = 0 is determined by

the sign of the function b1(x, t) and the value of the parameter α. The boundary layer is
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parabolic if α ≥ 1, if α = 0 has a power decay, and if α > 1 has an exponential decay.

The boundary layer does not appear if α < 1. In the neighborhood of SL2 , the boundary

layer is regular and exponential, but in the case of (1.3.15), the boundary layer only

occurs in the neighborhood of SL1 . With the use of the method of condensing grids, that

is classical grid approximations on grids condensing in a neighborhood of the boundary

layers and in a neighborhood of the normal part of the solution, the author developed

ε-uniformly convergent �nite-di�erence schemes. It is used to build schemes for b1 > 0,

α < 1, piecewise uniform grids with respect to x with some intervals of constant increase

in the neighborhood of the singularity of the regular part of the solution (and special

grids with a slowly changing increment for the construction of a quasi-optimal scheme

with respect to x). For all the schemes, several �nite-di�erence schemes are developed

and error estimates are presented.

Natesan et al. [97] applied the classical �nite-di�erence scheme on an appropriate piece-

wise uniform Shishkin mesh to solve the singularly perturbed turning point problem

(1.3.12)-(1.3.14) showing exponential boundary layers. The resulting �tted �nite-di�erence

scheme is given by

LNU(xi) ≡ εδ2U(xi) + a(xi)D
∗U(xi)− b(xi)U(xi) = f(xi),

xi ∈ DN
ε = {xi : 1 ≤ i ≤ N − 1}, U(0) = A, u(1) = B,

where δ2Zi = 2(D+Zi−D−Zi)
xi+1−xi−1

, D∗ =

D+Zi if a(xi) > 0,

D−Zi if a(xi) < 0,

xi =


−1 + i4τ

N
for 0 ≤ i ≤ N

4

τ − 1 +
(
i− N

4

) 4(1−τ)
N

for N
4

+ 1 ≤ i ≤ 3N
4

1− τ +
(
i− 3N

4

)
4τ
N

for 3N
4
≤ i ≤ N

and the transition parameter is τ = min{1
4
, kε lnN} with K ≥ 1

min{a0,b0} .The bene�t of

this approach over the previous ones [98, 99] was that it was simple to implement the

method presented in this work that did not require any knowledge about the asymptotic

approximation.

Dunne et al. [28] investigated a class of singularly perturbed time-dependent convection-
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di�usion problems with a boundary turning point on a rectangular domain

Lεu(x, t) ≡ (εuxx + aux − but − du)(x, t) = f(x, t) in D = Ω × (0, t), Ω = (0, 1)

u(x, t) = g(x, t) on Γ,

a(x, t) = a0(x, t)xp, p ≥ 1 ∀(x, t) ∈ D̄, a0(x, t) ≥ α > 0,

b(x, t) ≥ β > 0, d(x, t) ≥ δ ≥ 0 ∀(x, t) ∈ D̄,
Γ = D̄ = Γl ∪ Γb ∪ Γr, Γl = {(0, t)|0 ≤ t ≤ T},
Γb = {(x, 0)|0 ≤ x ≤ 1}, Γr = {(1, t)|0 ≤ t ≤ T}.

Here a0, b, d, f and g are su�ciently regular and f , g at the corners of the domain satisfy

su�cient compatibility conditions. A parabolic boundary layer of width
√
ε for a small ε

is used to solve this problem. It is de�ned that the corresponding reduced problem is

(a(v0)x − b(v0)t − dv0)(x, t) = f(x, t) in D, v0(x.t) = g(x, t) on Γb ∪ Γr. (1.3.16)

It is assumed here that the characteristic of the reduced problem (1.3.16) does not con-

verge with the boundary Γl, but gradually deviates from the lateral boundary away from

the vertical. Using the standard �rst-order upwind �nite-di�erence operator that satis�es

the maximum principle, the problem is discretised on a layer-adapted piecewise-uniform

Shishkin mesh. The time derivative using the backward �nite-di�erence is discretised.

The problem solution is subdivided into regular and singular components for the con-

vergence analysis of the method and a comparison principle is used in combination with

the appropriate barrier function. An error estimate of O(N−1
x ln2Nx + N−1

x ) is obtained

using this decomposition and the estimates of the singular component.

Ramos [112] proposed an exponentially �tted method using equally-spaced grids for the

type of convection-di�usion-reaction singularly perturbed one-dimensional ordinary dif-

ferential equation and the following parabolic equations

∂u
∂t

+ a(x, t)∂u
∂x

+ b(x, t)u = ε∂
2u
∂x2

+ f(x, t), 0 < x < 1, t > 0,

subject to u(0, t) = u(1, t) = 0, t ≥ 0, u(x, 0) = u0(x), 0 ≤ x ≤ 1 where x and t denote

the spatial coordinate and time respectively, u is the dependent variable, a(x, t) is the

speed and f(x, t) − b(x, t)u is the reaction term. First, the time derivative is discre-

tised by using the implicit backward Euler method in the method provided here, and

then the coe�cients of the resulting di�erential equations are frozen at each step. After

this, the resulting convection-di�usion-reaction di�erential operator's analytical solution

is obtained. For steady, constant coe�cient convection-di�usion-reaction equations, this

solution is exponential and accurate. For b(x, t) = 0, this approach agrees with expo-

nentially �tted methods based on a constant �ux density. The author showed that the

exponentially-�tted approach is more reliable and has a higher order of convergence than
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boundary resolving upwind �nite-di�erence schemes on piecewise-uniform meshes for the

�ve examples considered by him (three for parabolic and two for ordinary di�erential

equations with turning point).

In the code TOM by Mazzia and Trigiante [88], mesh selection strategies based on con-

ditioning developed by Brugnano and Trigiante [19] have been successfully used to solve

the singular perturbation problem with turning points. They implemented a strategy for

hybrid mesh selection based on the estimation of two parameters that de�ne the continu-

ous problem conditioning, as well as a standard local truncation error calculation. In the

well recognized TWPBVP code, Cash and Mazzia [21] have introduced a similar strategy.

It is found that the modi�ed code is substantially more e�cient than the original code

and also provides an estimation for the conditioning of the problem automatically.

A type of streamline di�usion �nite element method (SDFEM) was used by Chen et

al. [22] for a class of the following one-dimensional singularly perturbed problem with a

boundary turning point

−εu′′ − b(x)u′ = f(x), u(0) = u(1) = 0, b(x) > 0, x ∈ (0, 1).

The authors addressed speci�cally the case b(x) = xp, p > 0 but argued that it is

possible to apply the same analysis to a more general case. Re�ned estimates of the

discrete Green's function and the consistency error are used to determine uniform e�ects

of stability and optimality. Two types of layer adapted grids, Shishkin-type grid and

Bakhvalov-type grid, are proven to converge with SDFEM. It is proved that if u is the

solution to the above problem, uI is the nodal interpolation and uh is the �nite element

approximation for u, then

‖u− uI‖L∞(I) ≤

CN−2(lnN)2/(p+1), 1 ≤ i ≤ N+1
2
,

CN−2, N+1
2

+ 1 ≤ i ≤ N + 1.

on a Shishkin-type mesh. The obtained

‖u− uh‖∞ ≤ CN−2(lnN)(p+3)/(p+1),

by using triangle inequality ‖u− uh‖∞ ≤ CM ‖u− uI‖∞, whereas they got

‖u− uI‖∞ ≤ CN−2,

‖u− uh‖∞ ≤ C (|ln ε|+ lnN)N−2,

for Bakhvalov grid. Thus, they obtained the following stability result on a general class
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of grid by incorporating the above results:

‖u− uh‖∞ ≤ C |ln ε| infν∈V h ‖u− vh‖∞ .

Since the logarithmic growth of ε is slow, they stated that almost second-order schemes

are expected if the grid is correctly adapted, which is not easy to obtain using traditional

�nite-di�erence methods. The authors have pointed out that, compared to the traditional

approach to �nite-di�erence, the application of this uniform stability can provide an error

estimate for a broad class of layer-adapted grids with a priori or a posteriori information

on second-order derivatives and can also be applied to other problems, for instance,

multi-grid analysis such as solver for convection-dominated problems in maximum norm.

1.4 Summary of Results

This thesis is structured as follows: In Chapter 2, we refer to a class of singularly per-

turbed two-point boundary value problems with a multiple-turning point and discuss

some properties of the continuous problem. Speci�cally, we establish a minimum prin-

ciple, an estimate of stability, and bounds on the solution and its derivatives. Also, we

initiate a piecewise uniform graded Shishkin mesh (S-mesh) discretisation for developing

numerical B-spline collocation approximation to the problem. In addition, the stability

of the proposed scheme and ε-uniform convergence of the B-spline collocation method is

given. In Chapter 3, numerical examples demonstrating the accuracy of the proposed

method are discussed and compared with the existing methods. Finally, the summary of

the main conclusions is given at the end of the thesis in Chapter 4.
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2 Singularly Perturbed Multiple

Turning Point Problem

2.1 Continuous Problem

The numerical methods for approximating the solution of singularly perturbed two-point

boundary value problems for ordinary di�erential equations, as stated in Chapter 1,

are important because these problems occur frequently in the �elds of engineering and

science. The in�uence of a small parameter in a di�erential equation or a boundary con-

dition necessitates extra caution when using e�ective computational techniques to solve

these problems. The singularly perturbed turning point problem is attractive to both

applied and pure mathematicians since the solution exhibits some interesting behaviour

such as boundary layer, interior layer, and resonance phenomena [14]. In particular, sin-

gularly perturbed turning point problems received much attention in the literature due

to the complexity involved in �nding uniformly valid asymptotic expansions, unlike non-

turning problems. The problems with interior turning points represent one-dimensional

versions of stationary convection-di�usion problems with a dominant convective term and

a speed �eld that changes its sign in the catch basin. In contrast, boundary turning point

problems arise in geophysics and in modeling thermal boundary layers in laminar �ow

[48, 115]. If one allows for higher orders of the velocity distribution, then the boundary

turning point becomes multiple [128].

Consider the following class of singularly perturbed two-point boundary value problem

with a multiple-turning point

Lx,εu ≡ εu′′(x) + a(x)u′(x)− b(x)u(x) = f(x), x ∈ Ω = (0, 1),

u(0) = U0, u(1) = U1,
(2.1.1)

where ε is a small perturbation parameter satisfying 0 < ε� 1, U0 and U1 are given con-

stants and the coe�cient functions a(x), b(x) and f(x) are su�ciently smooth functions.

The turning point is simple, if a(x) vanishes at x = 0 and is called a multiple turning

points, if not only a(x) but its �rst derivative as well vanishes at x = 0. Multiple turning

point problems become di�erent from the simple turning point problems in the sense that
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previous theoretical results cannot be derived as they require λi = b(xi)/a
′(xi) < 0 [59].

To ensure that the solution of equation (2.1.1) has multiple boundary turning point, we

impose the following restriction

a(x) = xpc(x), p ≥ 2. (2.1.2)

Moreover, there exist a positive constant α, such that

c(x) ≥ α > 0, x ∈ Ω̄ = [0, 1]. (2.1.3)

In order that the solution of Eq. (2.1.1) satis�es a comparison principle [28], we require

that

b(x) ≥ 0, b(0) > β > 0. (2.1.4)

Under these assumptions (2.1.2) - (2.1.4), the turning point problem (2.1.1) possesses

a unique solution bounded uniformly in ε. Classical numerical methods on uniform

meshes are known to be inadequate for problems with boundary layers. It is of theo-

retical and practical interest to deliberate numerical methods for such problems, which

exhibit ε-uniform convergence, that is, numerical methods for which there exists an N0,

independent of ε, such that for all N ≥ N0, where N is the number of mesh elements,

the error constant and rate of convergence in the maximum norm are independent of ε.

Along these lines a numerical method is said to be ε-uniform of the order r on the mesh

ΩN = {xi, i = 0, 1, ..., N} if there exists an N0 independent of ε such that for all N ≥ N0

sup
0<ε≤1

max
ΩN
|u(x)− UN(x)| < CN−r, (2.1.5)

where u(x) is the solution of the di�erential equation, UN(x) is the numerical approxi-

mation to u(x), and C and r > 0 are independent of ε and N . Shishkin meshes are one

such example of graded mesh methods which are used to obtain ε-uniformly convergent

numerical schemes.

A large number of numerical schemes for a general singular perturbation problems have

been discussed in references [37, 89, 113]. In particular, it is di�cult to capture the nu-

merical behaviour of singularly perturbed turning point boundary value problems than

the singularly perturbed non-turning boundary value problems because of the vanishing

character of the coe�cient of the convective term. Singularly perturbed turning point

problems have been extensively studied by many researchers under various assumptions.

Patidar [60] introduced a �nite-di�erence numerical scheme on a non uniform grid using

cubic spline. Vigo-Aguiar [97] presented a parameter uniform numerical method based on
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classical upwind di�erence scheme on a Shishkin mesh. Kadalbajoo et al. [59] proposed

a B-spline collocation method using arti�cial viscosity on a singularly perturbed twin

boundary layer simple turning point problem. Geng [43] developed singularly perturbed

turning point problems based on reproducing kernel and stretching variable. Rai [111]

proposed a numerical method based on El-Mistikawy Werle exponential �nite-di�erence

scheme to solve boundary value problems for singularly perturbed di�erential-di�erence

equations with a turning point. Becher [11] considered a Richardson extrapolation based

on Shishkin mesh discretisation to improve the accuracy of a singularly perturbed interior

turning point problem with twin exponential boundary layers. Vulanovic [82] proposed

an upwind �nite-di�erence scheme for the numerical solution of semilinear convection-

di�usion problems with attractive boundary turning points. They showed that the max-

imum nodal error is bounded by a special weighted `1- type norm with respect to the

perturbation parameter on Shishkin meshes. Lin [79] constructed a numerical algorithm

based on arbitrary mesh for a quasilinear singular perturbation problem with turning

points.

Lemma 1. (Minimum Principle) Let u(x) ∈ C2(Ω̄), satisfying u(0) ≥ 0, u(1) ≥ 0, such

that Lx,εu(x) ≤ 0, ∀x ∈ Ω. Then u(x) ≥ 0, ∀x ∈ Ω̄.

Proof. Let there exists a point x∗ ∈ Ω̄ such that u(x∗) = min
x∈Ω̄

u(x) and on the contrary,

assume that u(x∗) < 0. Therefore, from the given boundary conditions, x∗ /∈ {0, 1}. It

implies from the de�nition of x∗ that u′(x∗) = 0 and u′′(x∗) ≥ 0. But then

Lx,εu(x∗) ≡ εu′′(x∗) + a(x∗)u′(x∗)− b(x∗)u(x∗) > 0,

negates the assumption. Since x∗ is an arbitrary point, it follows that u(x) ≥ 0,∀x ∈ Ω̄
and hence the minimum principle.

Lemma 2. (Stability Estimate) If u(x) is the solution of the problem (2.1.1), then ∀ε > 0

we have

‖u(x)‖ ≤ C
[
max (|U0| , |U1|) + ‖f‖

β

]
, ∀x ∈ Ω̄.

Proof. Let us de�ne the comparison functions

φ±(x) = max (|U0|, |U1|) + ‖f‖
β
± u(x).

Now applying the Lemma 1 to comparison functions φ±(x), we get the required stability

estimate. Furthermore, we give bounds for u(x) and its derivatives which are important

for the proof of precise representation of the solution.
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2.1 Continuous Problem

Lemma 3. Let y(x) be the solution of the problem Lx,εu(x) = g(x), u(0) = U0, u(1) = U1,

where g(x) ∈ C3(Ω̄) be a function such that

∣∣g(i)(x)
∣∣ ≤ C(1 + ε=i/2 exp(=µx)), i = 0(1)3, x ∈ Ω̄, µ =

√
β
ε

where b(0) > β. Then, there exist points ξi ∈ (0, ξ0), independent of ε, such that

y(i)(ξi) ≤ C, i = 1, 2, 3. (2.1.6)

Also,

y(i)(0) ≤ Cε−i/2, i = 1, 2, 3. (2.1.7)

Proof. By minimum principle, it follows that the solution y(x) is unique and |y(x)| ≤
C, ∀x ∈ Ω̄. Let us de�ne the functions di(x) by

di(x) = b(x)− ia′(x), i = 1, 2, 3.

For,

di(0) = b(0) > β > 0, i = 1, 2, 3.

It follows that in the neighborhood of 0, there exist a point ξ0 ∈ Ω, independent of ε,

such that

di(x) > β > 0, x ∈ [0, ξ0], i = 1, 2, 3.

Choosing point ξ1 ∈ (0, ξ0) such that y′(ξ1) = ξ−1
0 [y(ξ0)− y(0)]. Then (2.1.6) follows for

i = 1. Similarly, to prove for i = 2, we choose ξ2 from (0, ξ0) such that

y′′(ξ2) = ξ=2
0 [y(ξ0)− 2y( ξ0

2
) + y(0)],

and ξ3 for i = 3, can be found analogously. We rewrite the di�erential equation in the

form

εy′′(x) + (a(x)y(x))′ − (a′(x) + b(x))y(x) = g(x),

and integrate from zero to the point x∗ ∈ (0,
√
ε) such that

y′(x∗) = y(
√
ε)−y(0)√
ε

.
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2.1 Continuous Problem

It gives |y′(x∗)| ≤ Cε−1/2. To prove (2.1.7) for i = 1, we have

εy′(0) = εy′(x∗) + a(x∗)y(x∗)−
∫ x∗

0

[g(x) + (a′(x) + b(x))y(x)]dx,

which on simpli�cation gives,

|y′(0)| ≤ C(ε−1/2εp/2−1 + ε−1ε1/2) ≤ Cε−1/2.

Substituting the above bounds in Lx,εy(x) = g(x) and its successive di�erentiation at

x = 0, the result follows for i = 2, 3.

Lemma 4. The solution y(x) and its successive derivatives corresponding to Lx,εu(x) =

g(x), u(0) = U0, u(1) = U1, satisfy∣∣y(i)(x)
∣∣ ≤ C(1 + ε−i/2 exp(−µx)), i = 1, 2, 3. (2.1.8)

Proof. Let us de�ne the operators

Li,x,εu(x) ≡ Lx,εu(x) + ia′(x)u(x) ≡ εu′′(x) + a(x)u′(x)− di(x)u(x), i = 1, 2, 3.

The proof follows using comparison functions. Let us de�ne the comparison functions

ψ±i (x) = ±y(i)(x) + Ci(1 + ε−i/2 exp(−µx)), i = 1, 2, 3.

It is easy to show that for i = 1, 2, 3

±Li,x,εy(i)(x) ≤ C(1 + ε−i/2 exp(−µx)) (2.1.9)

and

Li,x,ε(Ci(1 + ε−i/2 exp(−µx))) ≤ −Ci[di(x) + ε−i/2(di(x)− β) exp(−µx)]. (2.1.10)

From (2.1.9) and (2.1.10), it can be seen that Ci can be chosen such that

Li,x,εψ
±

i (x) ≤ 0, x ∈ [0, ξi], i = 1, 2, 3.

Also,

ψ±i (0) ≥ 0, ψ±i (ξi) ≥ 0, i = 1, 2, 3.

Then by minimum principle lemma (Lemma 1), results (2.1.8) follows for x ∈ [0, ξ∗],
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2.1 Continuous Problem

where ξ∗=min{ξ1, ξ2, ξ3}. We now prove the results on [ξ∗, 1], i.e.,

∣∣y(i)(x)
∣∣ ≤ C, i = 1, 2, 3. (2.1.11)

Let

φ(x) =

∫ x

ξ∗

a(t)dt =

∫ x

ξ∗

tpc(t)dt.

Then we have,

ε
(
eφ(x)/εy′(x)

)′
= (g(x) + b(x)y(x)) eφ(x)/ε,

y′(x) =

[
1

ε

∫ x

ξ∗

(g(t) + b(t)y(t)) eφ(t)/εdt+ y′(ξ∗)

]
e−φ(x)/ε.

Now, using the fact that |y′(ξ∗)| ≤ C and

φ(t)− φ(x) ≤ α
tp+1 − xp+1

p+ 1
≤ αξp∗(t− x),

we get (2.1.11) for i = 1

|y′(x)| ≤ C, x ∈ [ξ∗, 1].

Similarly, plugging the bounds (|y′(x)| ≤ C, |g′(x)| ≤ C, x ∈ [ξ∗, 1]), after di�erentiating

Lx,εy(x) = g(x) and expressing y′′(x) by means of integration, we obtain (2.1.11) for

i = 2. Analogously, it can be proved for i = 3.

Theorem 1. The solution u(x) of the multiple turning point problem (2.1.1) can be

decomposed as

u(x) = λw(x) + v(x), ∀x ∈ Ω̄, (2.1.12)

where

w(x) = exp(=µ∗x), µ∗ =
√

b(0)
ε
, |λ| ≤ C,

and

∣∣v(i)(x)
∣∣ ≤ C(1 + ε(1−i)/2 exp(−µx)), i = 0, 1, 2, 3, ∀x ∈ Ω̄. (2.1.13)

Proof. Let the constant λ be determined by the condition

v(0) = −f(0)/b(0), i.e., v′(0) = 0.
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2.2 B-spline Collocation Method

From Lemma 4, we have |λ| ≤ C. Also, |v′(1)| ≤ C and the result (2.1.13) holds for

i = 0 . Substituting the decomposed form (2.1.12) in Lx,εu(x) = f(x) and di�erentiating

it once, we get

Lx,εv
′(x) = h(x), ∀x ∈ Ω̄, (2.1.14)

where

h(x) = f ′(x)− λ(Lx,εw(x))′ − a′(x)v′(x) + b′(x)v(x).

Now, we show that

∣∣h(i)(x)
∣∣ ≤ C(1 + ε−i/2 exp(−µx)), i = 0, 1, 2, ∀x ∈ Ω̄. (2.1.15)

Let us consider

(Lx,εw(x))′ = [µ∗(b(x)− b(0)) + a(x)µ2
∗ − b′(x)− a′(x)µ∗]w(x).

Using mean value theorem, we have b(x)− b(0) = xb′(ζ), ζ ∈ (0, x), we now obtain

|(Lx,εw(x))′| ≤ C(1 + xp−1ε−1/2 + xε−1/2 + xpε−1)w(x) ≤ C.

Also,

|a′(x)v′(x)| ≤ Cxp−1(|u′(x)|+ |w′(x)|) ≤ C.

Thus, we get (2.1.15) for i = 0 . Similarly [66] by applying Lemma 4 on (2.1.14), we

obtain

∣∣v′(i)(x)
∣∣ ≤ C(1 + ε−i/2 exp(−µx)), i = 0, 1, 2, ∀x ∈ Ω̄,

which is nothing, but (2.1.13) for i = 1, 2, 3. This representation shows that u(x) has an

O(
√
ε) boundary layer at x = 0.

2.2 B-spline Collocation Method

In this section, we consider the appropriate discretisation that will be used for developing

numerical B-spline collocation approximation to the problem. As the problem (2.1.1)

has a boundary layer in the vicinity of x = 0, we introduce a �tted piecewise uniform

Shishkin mesh to overcome the oscillations as ε→ 0 that discretises Ω̄ = [0, 1] with N =

{2m,m ≥ 2} mesh elements. The mesh is piecewise uniform depending on one transition
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2.2 B-spline Collocation Method

point which is de�ned using the transition parameter τ = min
{

1
2
, τ0

√
ε lnN

}
,where

τ0 ≥ 1√
β
is a constant independent of N, ε and to be �xed later. The mesh is generated

by setting a uniform mesh with N/2 mesh elements in each of Ω1 = [0, τ ] and Ω2 = [τ, 1]

such that Ω̄ = Ω1 ∪ Ω2. The mesh elements are given by

Ω̄N
τ =

xi | xi =

ih, 0 ≤ i ≤ N/2

τ + (i−N/2)h, N/2 + 1 ≤ i ≤ N

 , (2.2.1)

where mesh spacing is

h =

hi | hi =

2τ/N, 1 ≤ i ≤ N/2

2 (1− τ) /N, N/2 + 1 ≤ i ≤ N

 .

Here, we describe the B-spline collocation method to obtain the approximate solution to

the multiple turning point problem (2.1.1) with �tted mesh. We assume X is a linear

subspace of L2(Ω̄), the space of all square integrable functions de�ned on Ω̄. A cubic

B-splines φi, i = −1, 0, ..., N + 1, covers four elements and de�ned over the interval [0, 1]

as follows [110]:

φi(x) =
1

h3



(x− xi−2)3, xi−2 ≤ x ≤ xi−1,

h3 + 3h2(x− xi−1) + 3h(x− xi−1)2 − 3(x− xi−1)3, xi−1 ≤ x ≤ xi,

h3 + 3h2(xi+1 − x) + 3h(xi+1 − x)2 − 3(xi+1 − x)3, xi ≤ x ≤ xi+1,

(xi+2 − x)3, xi+1 ≤ x ≤ xi+2,

0, otherwise.

(2.2.2)

It is easy to see that each φi(x) is also a piecewise cubic with knots at Ω̄ and φi(x) ∈ X,

also φi(x) is twice continuously di�erentiable ∀x ∈ <. Let Λ = {φ−1, φ0, ..., φN+1} and

Φ3

(
Ω̄N
τ

)
=

{
Ψi : Ψi =

N+1∑
i=−1

kiφi, ki ∈ <
}
. The functions in Λ are linearly independent

on Ω̄, thus Φ3

(
Ω̄N
τ

)
is (N + 3) dimensional.

Table 2.2.1: Cubic B-spline basis and its derivatives function values at nodal points.

xi−2 xi−1 xi xi+1 xi+2

φi(x) 0 1 4 1 0

φ′i(x) 0 3
h

0 − 3
h

0

φ′′i (x) 0 6
h2

− 12
h2

6
h2

0

Let Lx,ε be a linear operator whose domain is X and whose range is also in X. Also, the
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2.2 B-spline Collocation Method

nodal values and its derivatives at the nodes xi's are given by Table 2.2.1. Let Φ3

(
Ω̄N
τ

)
be an (N+3) dimensional subspace of X. Now suppose the approximate solution is given

by

U(x) =
N+1∑
i=−1

eiφi(x), (2.2.3)

where ei's are unknown real coe�cients and φi(x) are cubic B-spline functions. This rep-

resentation shows the variation of all contributing cubic B-splines over a single element

and is useful for working out the solution inside the element. Now, we introduce two

super�uous cubic B-splines, φ−1 and φN+1 to satisfy the boundary conditions. Further-

more, it is required that the approximate solution U(x) satis�es the given problem (2.2.1)

at mesh points as well as boundary conditions at x = x0 and x = xN . Therefore, we have

Lx,εU(xi) = f(xi), 0 ≤ i ≤ N, (2.2.4)

and

U(x0) = U0, U(xN) = U1. (2.2.5)

Solving the collocation stencil (2.2.4), we obtain a system of (N + 1) linear equations in

(N + 3) unknowns

ei−1(εφ′′i−1(xi) + aiφ
′
i−1(xi)− biφi−1(xi)) + ei(εφ(xi) + aiφ

′
i(xi)− biφi(xi))

+ei+1(εφ′′i+1(xi) + aiφ
′
i+1(xi)− biφi+1(xi)) = fi, 0 ≤ i ≤ N,

(2.2.6)

where a(xi) = ai, b(xi) = bi and f(xi) = fi. Substituting the values of B-spline functions

φi and its derivatives at mesh points, we get

r−i ei−1 + rciei + r+
i ei+1 = h2fi, 0 ≤ i ≤ N, (2.2.7)

where r−i = 6ε− 3aih− bih2, rci = −12ε− 4bih
2, r+

i = 6ε+ 3aih− bih2.

The given boundary conditions become

e−1 + 4e0 + e1 = U0, (2.2.8)

and

eN−1 + 4eN + eN+1 = U1. (2.2.9)
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2.2 B-spline Collocation Method

Thus, we obtain a (N + 3)× (N + 3) system in (N + 3) unknowns {e−1, e0, ..., eN+1} by
using equations (2.2.7) - (2.2.9). Eliminating e−1 from �rst equation of (2.2.7) and from

(2.2.8), we �nd

(rc0 − 4r−0 )e0 + (r+
0 − r−0 )e1 = f0h

2 − U0r
−
0 . (2.2.10)

Similarly, eliminating eN+1 from the last equation of (2.2.7) and from (2.2.9), we get

(r−N − r
+
N)eN−1 + (rcN − 4r+

N)eN = fNh
2 − U1r

+
N . (2.2.11)

Thus, putting o� e−1 and eN+1 leads to a system of (N + 1) linear equations in (N + 1)

unknowns

Rhe = q, (2.2.12)

where e = (e0, e1, ..., eN)T are the unknown real coe�cients with right hand side q =

(q0, q1, ..., qN)T . The coe�cient matrix is given by

Rh =



(rc0 − 4r=0 ) (r+
0 − r=0 ) 0 0 . . . 0

r=1 rc1 r+1 0 . . . 0
...

...
...

... . . .
...

0 0 r−i rci r+
i 0

...
...

...
...

...
...

...
...

...
...

...
...

0 . . . 0 r−N−1 rcN−1 r+
N−1

0 . . . 0 0 (r−N − r
+
N) (rcN − 4r+

N)


.

The elements of the column vector q are

qi =


f0h

2 − U0r
=

0 , i = 0,

fih
2, i = 1(1)N − 1,

fNh
2 − U1r

+
N , i = N.

It is observed that collocation matrix Rh is strictly diagonally dominant and hence non-

singular. Solving the above matrix system gives the values of e = (e0, e1, ..., eN)T which

when coupled with the boundary conditions (2.2.8) and (2.2.9), we obtain the unknowns

e−1 and eN+1. Hence, the method of collocation using a basis of cubic B-splines when

applied to problem 2.1.1 has a unique solution, U(x), given by (2.2.3).
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2.3 Stability and Convergence Analysis

2.3 Stability and Convergence Analysis

In this section, we analyse the stability and convergence estimate in the maximum norm.

The collocation method for solving Rhe = q is said to be stable, if there exist positive

constants C1,C2 and C3 such that the perturbed system has a unique solution for ‖δRh‖ ≤
C3 and

‖e− ẽ‖ ≤ (C1 ‖δRh‖ ‖e‖+ C2 ‖δq‖) .

Suppose a small error δRh and δq has been made in the calculations of Rh and q respec-

tively. Let ẽ be the solution of the perturbed system

(Rh + δRh) ẽ = q + δq. (2.3.1)

We have seen that Rh is strictly diagonally dominant. Therefore, by a result in [123], for

a su�ciently small value of h, we have

∥∥R−1
h

∥∥ ≤ C

h2
= κ. (2.3.2)

Choose a positive constant r < 1
2κ
. Then whenever ‖δRh‖ < r, (2.3.1) has a unique

solution, for

∥∥(Rh + δRh)
−1
∥∥ =

∥∥∥(I +R−1
h δRh

)−1
R−1
h

∥∥∥ ≤ 2κ,

because

∥∥R−1
h δRh

∥∥ ≤ ∥∥R−1
h

∥∥ ‖δRh‖ <
1

2
.

Since

(Rh + δRh) (e− ẽ) = δRhe− δq,

it follows that

‖e− ẽ‖ ≤ 2κ (‖δRh‖ ‖e‖+ ‖δq‖) , (2.3.3)

which ensures the stability of the collocation system.

Lemma 5. The third degree B-splines Λ = {φ−1, φ0, ..., φN+1} satisfy the following in-
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2.3 Stability and Convergence Analysis

equality

N+1∑
i=−1

|φi(x)| ≤ 10, 0 ≤ x ≤ 1.

Proof. The proof easily follows by the de�nition of the third degree B-spline given by

(2.2.2).

Error estimate (U − u) is given in the following theorem, where U(x) is the cubic B-spline

collocation approximate of the exact solution.

Theorem 2. Let u(x) be the solution of the problem and U(x) be the corresponding

collocation approximation from the space of cubic splines Φ3

(
Ω̄N
τ

)
, then for su�ciently

small values of h and ε, we have

|U(x)| ≤ C, x ∈ Ω̄,

where C is a generic positive constant.

Proof. For su�ciently small h and ε, it follows from the result in (2.3.2) and (2.2.12),

‖e‖ ≤
∥∥R−1

h

∥∥ ‖q‖ ≤ C.

Using Lemma 5, and boundedness of coe�cients e−1 and eN+1, by boundary conditions

(2.2.8) and (2.2.9), we have

|U(x)| =
∣∣∣∣N+1∑
i=−1

eiφi(x)

∣∣∣∣ ≤N+1∑
i=−1

|ei| |φi(x)| ≤ C, x ∈ Ω̄,

Now, ε-uniform error estimate is given by the following theorem.

Theorem 3. Let u(x) be su�ciently smooth solution of the problem and U(x) be the

corresponding collocation approximation from the space of cubic splines Φ3

(
Ω̄N
τ

)
on a

Shishkin mesh. If f ∈ C2[0, 1], then the ε-uniform error estimate is given by

sup
0<ε�1

‖(U − u)(x)‖ ≤ CN−2(lnN)2

where C is a positive constant independent of ε and N.

Proof. Let Y (x) be the unique spline interpolate from Φ3

(
Ω̄N
τ

)
to the exact solution u(x)

of the boundary value problem given by

Y (x) =
N+1∑
i=−1

liφi(x). (2.3.4)
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2.3 Stability and Convergence Analysis

If f(x) ∈ C2[0, 1], then u(x) ∈ C4[0, 1] and it follows from Hall error estimates [47, 110]

that

|Dj(u(x)− Y (x))| ≤ ωj
∣∣u(4)(x)

∣∣h4−j, j = 0, 1, 2, (2.3.5)

where ωj's are constants independent of h and N . Hence, from estimate (2.3.5) it follows

that

|Lx,εu(xi)− Lx,εY (xi)| ≤ C
(
εω2 + ω1 ‖a‖h+ ω0 ‖b‖h2

) ∣∣u(4)(x)
∣∣h2. (2.3.6)

Assume that

Lx,εY (xi) = f̃(xi), 0 ≤ i ≤ N,

which produces the linear algebraic matrix Rhl = q̃, where l = (l0, l1, ..., lN)T and q̃ =

(q̃0, q̃1, ..., q̃N)T are column vectors. Now,

(e− l) = R−1
h (q − q̃) , (2.3.7)

where

q− q̃ =
(
h2
(
f(x0)− f̃(x0)

)
, h2
(
f(x1)− f̃(x1)

)
, . . . , h2

(
f(xN)− f̃(xN)

))T
. (2.3.8)

We consider di�erent cases based on Shishkin mesh characterization:

Case 1. When τ = 1
2
, it implies that mesh is uniform with spacing h = 1

N
and

min {τ0

√
ε lnN} ≥ 1

2
. Using estimate (2.3.6), ε−1 ≤ (2τ0 lnN)2 , Lemma 4 and the

argument that ε� 1 and ε−k/2 exp (−µx)→ 0 as ε→ 0 ∀x ∈ Ω, k ∈ I+, we get

|Lx,εu(xi)− Lx,εY (xi)| ≤ CN−2(lnN)2. (2.3.9)

Case 2. When τ < 1
2
, it implies that mesh is piecewise uniform with spacing h = 2τ

N
for

{xi}
N
2
i=0 in Ω1 and h = 2(1−τ)

N
for {xi}Ni=N

2
+1 in Ω2 where τ = τ0

√
ε lnN . For {xi}Ni=N

2
+1 in

Ω2, we have
∣∣y(i)(x

∣∣ ≤ C from (2.1.11), it follows from (2.3.6) that

|Lx,εu(xi)− Lx,εY (xi)| ≤ CN−2. (2.3.10)

Furthermore, if {xi}
N
2
i=0 in Ω1, we have h = 2τ0

√
εN−1 lnN, thus it follows from Lemma

4, (2.3.6) and the fact that ε � 1 and ε−k/2 exp (−µx) → 0 as ε → 0 ∀x ∈ Ω, k ∈ I+,we

get

|Lx,εu(xi)− Lx,εY (xi)| ≤ CN−2(lnN)2. (2.3.11)
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By incorporating (2.3.9), (2.3.10) and (2.3.11), we have

|Lx,εu(xi)− Lx,εY (xi)| ≤ CN−2(lnN)2. (2.3.12)

Hence,

|Lx,εU(xi)− Lx,εY (xi)| = |f(xi)− Lx,εY (xi)| = |Lx,εu(xi)− Lx,εY (xi)| ≤ CN−2(lnN)2.

(2.3.13)

(2.3.8) and (2.3.13) imply that

‖q − q̃‖ ≤ CN−4(lnN)2. (2.3.14)

From estimates (2.3.2), (2.3.7) and (2.3.14), we get

(ei − li) ≤ CN−2(lnN)2, 0 ≤ i ≤ N. (2.3.15)

Using (2.3.15) and boundedness of coe�cients e−1 and eN+1, by boundary conditions

(2.2.8) and (2.2.9), we have

(ei − li) ≤ CN−2(lnN)2, −1 ≤ i ≤ N + 1. (2.3.16)

Thus, using above estimate (2.3.16) and Lemma 5, we obtain

‖U(x)− Y (x)‖ ≤ max
−1≤i≤N+1

|ei − li|
N+1∑
i=−1

|φi(x)| ≤ CN−2(lnN)2. (2.3.17)

Finally, using triangle inequality, Hall estimate (2.3.5) and (2.3.17), we have

sup
0<ε�1

‖(U − u)(x)‖ ≤ CN−2(lnN)2.

2.4 Summary of Results

In this chapter, explicit bounds for the solution of the turning point problem and its

derivatives are derived. We prove that the operator Lx,ε as de�ned in (2.1.1) satis�es a

minimum principle. Then we state a stability estimate for the solution of (2.1.1). Also,

a numerical method based on B-spline collocation is presented to solve the singularly

perturbed multiple turning point problem. These methods can be closely related to

Galerkin methods, hence to �nite-element methods, as they are much easier and more
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2.4 Summary of Results

e�cient for computing. B-splines are used because they yield results of higher accuracy

as compared with those of polynomial interpolation. The analysis has been given for

the stability and convergence of the B-spline collocation method wherein the collocation

method gives a system of linear equations.
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3 Results and Discussion

3.1 Numerical Results

In this section, we consider some known numerical examples for singularly perturbed

multiple turning point problems to demonstrate the e�ciency of the proposed method

presented in this paper.

Example 1. [128].We consider the example

εu′′(x) + xpu′(x)− u(x) = f(x), x ∈ (0, 1) ,

u(0) = 2, u(1) ≈ e,

whose exact solution is given by

u(x) = e
−x√
ε + ex,

from which we determine f(x). Since the problem has an analytical solution, therefore,

for every ε the computed maximum pointwise errors are estimated by

EN,ε
∞ = ‖u− UN,ε‖∞ = max

0≤i≤N
|u(xi)− UN,ε(xi)| ,

where u and UN,ε are the exact and computed solutions respectively. Also, the ε-uniform

maximum point-wise error is computed as

EN
∞ = max

ε
EN,ε
∞ .
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3.1 Numerical Results

Table 3.1.1: Maximum pointwise errors EN,ε
∞ for Example 1 with uniform mesh.

p, ε ↓ N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

2, 2−16 1.106E + 00 1.021E − 01 1.416E − 01 6.291E − 02 1.684E − 02 3.914E − 03 9.618E − 04

2, 2−20 2.014E + 01 2.501E + 00 2.373E − 01 1.956E − 01 1.496E − 01 6.338E − 02 1.687E − 02

2, 2−25 6.499E + 02 8.394E + 01 1.051E + 01 1.243E + 00 1.120E − 01 2.294E − 01 1.944E − 01

EN∞ 6.499E + 02 8.394E + 01 1.051E + 01 1.243E + 00 1.496E − 01 2.294E − 01 1.944E − 01

3, 2−16 1.850E − 01 2.241E − 01 1.521E − 01 6.353E − 02 1.688E − 02 3.922E − 03 9.635E − 04

3, 2−20 2.517E + 00 1.892E − 01 2.527E − 01 2.277E − 01 1.522E − 01 6.354E − 02 1.688E − 02

3, 2−25 8.321E + 01 0.521E + 01 2.802E − 01 2.570E − 01 2.620E − 01 2.470E − 01 1.961E − 01

EN∞ 8.321E + 01 0.521E + 01 2.802E − 01 2.570E − 01 2.620E − 01 2.470E − 01 1.961E − 01

Table 3.1.2: Maximum pointwise errors EN,ε
∞ for Example 1 with �tted Shishkin mesh.

p, ε ↓ N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

2, 2−16 1.523E − 02 8.871E − 03 5.211E − 03 2.153E − 03 6.626E − 04 3.168E − 04 1.466E − 04

2, 2−20 1.495E − 02 8.236E − 03 4.700E − 03 2.750E − 03 1.407E − 03 5.032E − 04 1.750E − 04

2, 2−25 1.488E − 02 8.093E − 03 4.536E − 03 2.491E − 03 1.362E − 03 7.482E − 04 3.805E − 04

EN∞ 1.523E − 02 8.871E − 03 5.211E − 03 2.750E − 03 1.407E − 03 7.482E − 04 3.805E − 04

3, 2−16 1.455E − 02 7.506E − 03 3.824E − 03 1.356E − 03 5.881E − 04 5.993E − 04 2.667E − 04

3, 2−20 1.462E − 02 7.865E − 03 4.408E − 03 2.338E − 03 1.143E − 03 3.931E − 04 2.120E − 04

3, 2−25 1.462E − 02 7.951E − 02 4.460E − 03 2.447E − 03 1.311E − 03 6.853E − 04 3.403E − 04

EN∞ 1.462E − 02 7.951E − 02 4.460E − 03 2.447E − 03 1.311E − 03 6.853E − 04 3.403E − 04

Table 3.1.3: Comparison of maximum errors
(
EN,ε
∞
)
of the present method with �nite-

di�erence method (FDM), when applied to Example 1 for p = 2 and di�erent values
of ε,N .

FDM [128] Present Method

ε ↓ N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

10−6 3.190E − 02 1.55E − 02 7.78E − 03 5.754E − 03 3.329E − 03 1.834E − 03

10−12 3.65E − 02 1.83E − 02 9.11E − 03 5.543E − 03 3.059E − 03 1.660E − 03

Example 2. Now we consider the following problem,

εu′′(x) + 1
2
xpu′(x)− u(x) = f(x), x ∈ (0, 1),

u(0) = 1, u(1) ≈ 1,

53



3.1 Numerical Results

with the exact solution

u(x) = e
−x√
ε + x2,

from which we determine f(x).

The estimated maximum pointwise errors for test Examples 1, 2 and 3 are presented in

Tables 3.1.1, 3.1.2 and 3.1.4 to 3.1.7 with uniform mesh and �tted Shishkin mesh. The

results are presented for two values of p = 2, 3, although it can be extended for higher

values.

Table 3.1.4: Maximum pointwise errors EN,ε
∞ for Example 2 with uniform mesh.

p, ε ↓ N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

2, 2−18 2.501E + 00 2.373E − 01 1.956E − 01 1.496E − 01 6.338E − 02 1.687E − 02 3.920E − 03

2, 2−20 1.038E + 01 1.227E + 00 1.109E − 01 2.117E − 01 1.509E − 01 6.346E − 02 1.687E − 02

2, 2−25 3.361E + 02 4.235E + 01 5.229E + 00 5.856E − 01 1.871E − 01 2.382E − 01 1.952E − 01

EN∞ 3.361E + 02 4.235E + 01 5.229E + 00 5.856E − 01 1.871E − 01 2.382E − 01 1.952E − 01

3, 2−18 2.756E − 01 2.482E − 01 2.275E − 01 1.522E − 01 6.354E − 02 1.688E − 02 3.922E − 03

3, 2−20 1.236E + 00 2.272E − 01 2.550E − 01 2.278E − 01 1.523E − 01 6.354E − 02 1.688E − 02

3, 2−25 4.198E + 01 2.574E + 00 1.904E − 01 2.618E − 01 2.623E − 01 2.470E − 01 1.961E − 01

EN∞ 4.198E + 01 2.574E + 00 2.550E − 01 2.618E − 01 2.623E − 01 2.470E − 01 1.961E − 01

Table 3.1.5: Maximum pointwise errors EN,ε
∞ for Example 2 with �tted Shishkin mesh.

p, ε ↓ N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

2, 2−18 6.644E − 03 2.347E − 03 8.421E − 04 2.856E − 04 9.322E − 05 2.630E − 05 1.672E − 05

2, 2−20 6.719E − 03 2.347E − 03 8.422E − 04 2.857E − 04 9.324E − 05 2.949E − 05 8.117E − 06

2, 2−25 6.762E − 03 2.347E − 03 8.422E − 04 2.768E − 04 8.855E − 05 2.862E − 05 9.102E − 06

EN∞ 6.769E − 03 2.347E − 03 8.422E − 04 2.857E − 04 9.324E − 05 2.949E − 05 1.672E − 05

3, 2−18 6.771E − 03 2.348E − 03 8.424E − 04 2.858E − 04 9.326E − 05 2.631E − 05 1.811E − 05

3, 2−20 6.767E − 03 2.347E − 03 8.423E − 04 2.857E − 04 9.326E − 05 2.950E − 05 8.119E − 06

3, 2−25 6.762E − 03 2.347E − 03 8.422E − 04 2.786E − 04 8.928E − 05 2.891E − 05 9.103E − 06

EN∞ 6.771E − 03 2.348E − 03 8.424E − 04 2.858E − 04 9.326E − 05 2.950E − 05 1.811E − 05

Example 3. Finally, we consider the following problem,

εu′′(x) + xpu′(x)− (1
2
− x)2u(x) = −ex, x ∈ (0, 1),
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3.1 Numerical Results

u(0) = u(1) = 0,

which do not have a closed form of the exact solution.

Since the given problem does not posses analytical solution, therefore, we use the double

mesh principle [26] to estimate the maximum pointwise error as follows

EN,ε = max
0≤i≤N

|UN,ε(xi)− U2N,ε(xi)| ,

where U2N,ε(xi) is the solution obtained on a mesh, containing the same number N of

mesh points used to compute UN,ε(xi) and N more mesh points are added by selecting

the mid points of all x′is, i.e., xi+1/2 = (xi + xi+1)/2 for i = 1, 2, ..., N − 1. Also, the

ε-uniform maximum point-wise error is computed as

EN = max
ε
EN,ε.

Table 3.1.6: Maximum pointwise errors EN,ε for Example 3 with uniform mesh.

p, ε ↓ N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

2, 2−15 2.371E + 00 2.899E − 01 1.111E − 01 2.466E − 02 6.042E − 03 1.497E − 03 3.741E − 04

2, 2−20 1.453E + 02 1.449E + 01 7.644E − 01 4.888E − 01 2.041E − 01 5.217E − 02 1.189E − 02

2, 2−25 4.752E + 03 5.309E + 02 4.201E + 01 4.831E + 00 5.487E − 01 7.287E − 01 3.541E − 01

EN 4.752E + 03 5.309E + 02 4.201E + 01 4.831E + 00 5.487E − 01 7.287E − 01 3.541E − 01

3, 2−15 8.752E − 01 3.942E − 01 1.156E − 01 2.470E − 02 6.172E − 03 1.526E − 03 3.809E − 04

3, 2−20 3.205E + 01 1.042E + 00 1.023E + 00 5.707E − 01 2.086E − 01 5.241E − 02 1.195E − 02

3, 2−25 1.108E + 03 3.127E + 01 1.363E + 00 1.292E + 00 1.151E + 00 7.839E − 01 3.576E − 01

EN 1.108E + 03 3.127E + 01 1.363E + 00 1.292E + 00 1.151E + 00 7.839E − 01 3.576E − 01

Table 3.1.7: Maximum pointwise errors EN,ε for Example 3 with �tted Shishkin mesh.

p, ε ↓ N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

2, 2−15 2.368E − 01 9.143E − 02 1.044E − 02 1.760E − 03 1.022E − 03 7.168E − 04 2.537E − 04

2, 2−20 4.210E − 01 1.973E − 01 7.935E − 02 2.234E − 02 6.392E − 03 1.718E − 03 4.453E − 04

2, 2−25 7.411E − 01 4.996E − 01 1.924E − 01 9.745E − 02 4.971E − 02 2.421E − 02 8.621E − 03

EN 7.411E − 01 4.996E − 01 1.924E − 01 9.745E − 02 4.971E − 02 2.421E − 02 8.621E − 03

3, 2−15 4.857E − 01 1.111E − 01 1.126E − 02 2.980E − 03 1.610E − 03 1.185E − 03 3.491E − 04

3, 2−20 6.939E − 01 1.087E − 01 1.580E − 01 8.597E − 02 2.120E − 02 5.753E − 03 1.474E − 03

3, 2−25 1.143E + 00 5.601E − 01 7.327E − 02 4.956E − 02 3.812E − 02 2.425E − 02 1.138E − 02

EN 1.143E + 00 5.601E − 01 1.580E − 01 8.597E − 02 3.812E − 02 2.425E − 02 1.138E − 02
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3.1 Numerical Results

Figure 3.1.1: Exact and proposed method numerical solutions for Example 1 for ε =
2−25, p = 2 and N = 512 with �tted Shishkin mesh.
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3.1 Numerical Results

Figure 3.1.2: Exact and proposed method numerical solutions for Example 2 for ε =
2−20, p = 3 and N = 256 with �tted Shishkin mesh.

Figure 3.1.3: Uniform and �tted numerical solutions for Example 3 for ε = 2−20, p = 2
and N = 128.
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3.1 Numerical Results

Figure 3.1.4: Comparison of ε-uniform maximum point-wise error from N = 16 to N =
1024 of: (a) Example 1 when p = 2, (b) Example 2 when p = 3 and (c) Example 3
when p = 2.

Figure 3.1.5: Fitted numerical solutions of Example 3 for ε = 2−20, N = 512, with
di�erent values of p.
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3.2 Summary of Results

3.2 Summary of Results

Numerical errors EN,ε
∞ presented in Tables 3.1.2 and 3.1.5 for various values of the pa-

rameter ε, p and collocation nodes implies that the proposed method with �tted Shishkin

mesh shows a greater agreement with the exact solution as the mesh size is re�ned. To

further illustrate the applicability of the proposed method numerical solution pro�les

have been plotted in Fig. 3.1.1 and Fig. 3.1.2 for Examples 1 and 2 for the exact solution

versus computed solutions obtained for the di�erent values of ε and N on uniform mesh

and Shishkin mesh. On a uniform mesh, the numerical method fails to capture the sin-

gularly perturbed oscillatory nature of the solution as the perturbation parameter ε→ 0.

It has been seen that the exact and the numerical solution are identical in most of the

regions of the domain, except in the boundary layer region near x = 0. To control these

deviations in the boundary layer region, we use piecewise uniform Shishkin mesh which is

�nely concentrated in the boundary layer region and the resulting behaviour can be seen

in the �gures. From the numerical solution pro�les given in Fig. 3.1.5, we observe that

with increasing values of p, the hump gets thin and shifts away from the boundary layer

region. The plots displayed in Fig. 3.1.4 clearly demonstrate the higher accuracy of the

proposed numerical scheme on a �tted Shishkin mesh as compared to the uniform mesh.

Comparative results obtained by the collocation method are presented along with those

obtained by other researchers. Table 3.1.3 show the proposed scheme is more accurate

and e�cient than the classical �nite-di�erence scheme.
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4 Conclusion

A numerical method is presented to solve a linear second-order singularly perturbed mul-

tiple boundary turning point problems. In general, the numerical treatment of turning

point problems is much more complicated than singular perturbation problems without

turning points. B-splines are used because they yield results of higher accuracy as com-

pared with those of polynomial interpolation. The most signi�cant virtue of the colloca-

tion method is its ease in computation and application. Collocation with B-splines leads

to banded matrices as opposed to full matrices using polynomials, trigonometric functions

and other well-known non-piecewise approximates. These methods can be closely related

to Galerkin methods, hence to �nite-element methods (FEM). In comparison to FEM,

the collocation matrix involves no integration or numerical quadrature, for complicated

coe�cients of di�erential equations, hence reduces the bandwidth and operation count.

For the cubic B-spline collocation method, the number of nonzero terms in a row of the

coe�cient matrix is equal to the number of nonzero basis functions at the corresponding

mesh point, that is, 3, and hence the bandwidth is 1. However, in the case of the cubic

B-spline �nite-element Galerkin method, the products of cubic B-spline basis functions

are integrated to compute the elements of the de�ning matrix which gives the bandwidth

of 3. Thus, the collocation method has less order computational complexity as compared

to the Galerkin method.

Solutions of such problems at small values of ε have a abrupt behaviour in the neigh-

borhood of the boundary layer. It has been seen that the exact and numerical solutions

without �tted mesh are identical for most of the domain except in the boundary layer re-

gions. To control these deviations in the boundary layer region, piecewise uniform S-mesh

is used that gives improved accuracy as compared to related uniform mesh scheme. A

brief analysis has been carried out and the method is shown to be ε-uniformly convergent.

It is seen from Tables 3.1.2, 3.1.5 and 3.1.7 that for a �xed value of ε, the values of max-

imum pointwise errors EN,ε
∞ decreases as the number of mesh points N increases, which

shows that the convergence is uniform concerning mesh parameter. The performance of

the proposed scheme is investigated by comparing the results for some well-known prob-

lems and observed that the accuracy in the numerical results is comparable and better

to those by existing methods. Thus, the method works nicely for small values of ε and

numerical results support theoretical predictions and exhibit good physical behaviour.
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Future Research Directions

Singularly perturbed turning point(s) problems were �rst studied in the late 1960s. The

analysis of singularly perturbed problems had previously been restricted to non-vanishing

coe�cients. This section highlights the research perspectives resulting from this thesis. In

the previous chapter, we constructed a cubic B-spline collocation scheme to numerically

solve the singularly perturbed multiple turning point problem. In addition, it would be

interesting to consider higher-order quintic B-splines on Shishkin mesh and Bakhvalov

mesh to further improve the results in comparison with cubic B-splines. To add to the

subject, a few extensive problems may be considered:

A class of one-dimensional singularly perturbed problem with a boundary turning point

−εu′′ − b(x)u′ = f(x), u(0) = u(1) = 0, b(x) > 0, x ∈ (0, 1).

where b(x) = xp, p > 0. This type of problem was previously studied by Chen et al.

[22] where they provided an error estimate for a broad class of layer-adapted grids with

a priori or a posteriori information on second-order derivatives and can also be applied

to other problems.

A class of singularly perturbed time-dependent convection-di�usion problems with a

boundary turning point on a rectangular domain

Lεu(x, t) ≡ (εuxx + aux − but − du)(x, t) = f(x, t) in D = Ω × (0, t), Ω = (0, 1)

u(x, t) = g(x, t) on Γ,

a(x, t) = a0(x, t)xp, p ≥ 1 ∀(x, t) ∈ D̄, a0(x, t) ≥ α > 0,

b(x, t) ≥ β > 0, d(x, t) ≥ δ ≥ 0 ∀(x, t) ∈ D̄,
Γ = D̄ = Γl ∪ Γb ∪ Γr, Γl = {(0, t)|0 ≤ t ≤ T},
Γb = {(x, 0)|0 ≤ x ≤ 1}, Γr = {(1, t)|0 ≤ t ≤ T}.

Here a0, b, d, f and g are su�ciently regular and f , g at the corners of the domain

satisfy su�cient compatibility conditions. Dunne et al. [28] investigated this problem

on a layer-adapted piecewise-uniform Shishkin mesh using the backward �nite-di�erence

method on a time derivative.

A system of singularly perturbed nonlinear di�erential equations with attractive turning

point

−εu′′(x) + (xu(x))′ + a(x)u(x) = f(x), −1 < x < 1, u(−1) = A, u(1) = B,

−εy′′(x) + (xy(x))′ + b(x, y(x)) = 0, −1 < x < 1, y(−1) = A, y(1) = B,

where a(x) ≥ 1, a(0) ≥ 1 + δ, by(x, y) ≥ 1 + δ and δ > 0. Clavero and Lisbona [23]

studied and gave numerical results using exponentially �tted schemes for the integration
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of linear problem and Samarskii's scheme of semilinear problem.
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