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Abstract

With the development and fast growth in information technology, data share
security is an essential component. Cryptography is the general area of study
associated with establishing different types of information security. One of
the famous cryptography fields is the public key cryptosystem, which uses
elliptic curves to construct key exchange protocols, encryption, authentication
protocols, and digital signatures.

The purpose of this thesis is to investigate Huff’s elliptic curves over finite
fields. Huff’s curve has not been used in cryptography as they are not fast
even when compared to other well-known elliptic curves. Moreover, there
is not much research done on Huff’s model of elliptic curves. This thesis
reflects on Weierstrass elliptic curves and a few of Huff’s elliptic curves in
literature and their essentials towards cryptography. The main contribution
of this thesis is to introduce a new form of generalized Huff’s model of elliptic
curves and their arithmetic for point addition and doubling point. These new
curves endowed with the addition are shown to be a group over a finite
field. The computational cost of point addition and doubling point using
projective, Jacobian, Lopez-Dahab coordinate systems, and embedding of the
curves into P1 × P1 system was compared . The new form of generalized
Huff’s model of elliptic curves are birationally equivalent to Weierstrass form
of elliptic curves. It is noted that the computational cost on the curves for
point addition and doubling point is lowest by embedding the curves into
P1×P1 system than the other mentioned coordinate systems. It is noted that
the introduced curve is nearly optimal to other known Huff’s models but has
not shown any improvement in computational cost.
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Chapter 1

Introduction

The plane curves of degree 3 are known as cubics and have the general form
of

Ax3 + Bx2y + Cxy2 + Dy3 + Ex2 + Fxy + Gy2 + Hx + Iy + J = 0.

Elliptic curves are non-singular cubic curves and have points defined over
a finite field K [16, 36]. Elliptic curves are one of the most basic instances
of group varieties, which are algebra geometric objects that may be adorned
with a group structure. Their idea has been applied to significant issues in
number theory, and it has lately found a practical application in the area
of cryptography. In, the first cryptosystem was developed that was based
on the so-called Diffie-Hellman problem on group varieties [13]. Follow-
ing that, several additional writers were motivated to develop cryptosystems
based on the same issue, thus addressing a range of difficulties in public-key
cryptography. These cryptosystems were traditionally developed using the
multiplicative group F×q , which may be thought of as the affine plane curve
xy = 1 over Fq. Replacing this group variety with an elliptic curve results in
more secure cryptosystems than traditional equivalents, making this option
extremely popular in recent years.

1.1 Background

Elliptic curves have been widely studied as a subject of almost pure mathe-
matical interest. The study of elliptic curves could be of various areas: Alge-
bra, Algebraic Geometry, Number Theory, Diophantine problems, etc. Lang

1



2 Introduction

[27] mentions in his book that

”It is possible to write endlessly on elliptic curves. (This is not a treat.)”

Elliptic curves have broad applications in cryptography, for which we intro-
duce some of the technical cryptographic terms. Cryptography in the current
internet world means sending data securely to the receiver without any third
party able to decode and access the message sent. One of the methods is to
use a secret-key cryptosystem. In the secret-key cryptosystem (also known as
symmetric-key cryptosystem), two parties who wish to communicate through
an unsecured channel have to use a single shared key to encrypt and decrypt
the message. The secret-key cryptosystem is relatively faster because it has
a high data transfer rate, and users usually use shorter keys to encrypt and
decrypt data. This method’s downfall is that the secret-key must be shared
securely, and both parties must keep the key secret. A new era in cryptogra-
phy started with a public-key cryptosystem (also known as asymmetric-key
cryptosystem). Diffie and Hellman’s groundbreaking idea in 1976 [13] got a
lot of attention in the cryptographic world. In the public-key cryptosystem,
encryption and decryption are done by two different keys. We here discuss
public-key encryption by assuming that Bob wishes to send a scrambled mes-
sage to Alice. Alice has a pair of keys, one key is called public-key, and the
other is called secret-key or private-key. These keys are mathematically re-
lated, but the private-key is extremely difficult to deduce from the public-key.
The public-key of Alice could be accessed by any user on the same network.
Bob uses Alice’s public-key to encrypt the message. Finally, Alice uses her
secret-key to decrypt the encrypted message sent by Bob.

One of the exciting properties of elliptic curves is that we can define a group
structure on them. The field of elliptic curve became interesting in the mid-
1980s when Koblitz and Miller independently proposed Elliptic Curve Cryp-
tography (ECC) using Elliptic Curve Discrete Logarithmic Problem (ECDLP)
[25, 29].

The ECC offers better security compared to Rivest-Shamir-Adleman (RSA)
cryptosystem using substantially lower-key sizes for a security parameter
ε. Still, the underlying arithmetic group is more tedious, which makes the
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study particularly interesting for systems with confined computing power
and memory (such as cell phone) [26]. It is not surprising that small devices
such as cell phones have increased in popularity in recent years, which reg-
ularly interact with the internet. These small devices have improved with
better security due to ECC. The ECDLP does not have a ring structure; hence
it is not vulnerable to attacks like the index calculus attack, which is the most
efficient algorithm to solve both the problem of factoring the product of two
large primes [20].

In 1995, elliptic curves played a vital role in the fascinated celebrations of
Fermat’s Last Theorem, whereby Andrew Wiles proved Fermat’s Last Theorem
using the proof of the modularity conjecture for semistable elliptic curves
[38]. This led to renewed interest in elliptic curves and it’s study. The uses
of elliptic curves have commercialized and are studied extensively for their
application in number theory and cryptography [17, 9, 10]. Following the
separate contributions of Miller Miller [29] and Koblitz Koblitz [25], elliptic
curve cryptography (ECC) began to be employed for commercial applications.

As a result, a significant amount of research has been devoted to analyzing the
performance of various forms of elliptic curves proposed in the mathematical
literature, such as Weierstra cubics Hoffstein et al. [20], Jacobi intersections
Billet and Joye [8], Hessian curves Bernstein et al. [4], or the more recent
forms of elliptic curves due to Montgomery Montgomery [30], or Edwards
Edwards [15]. In addition, a long-forgotten model of elliptic curves suggested
by Huff’s in 1948 was addressed in 2010 Joye et al. [24]. This thesis is written
on the fundamentals of Huff’s model of elliptic curves.

1.2 Motivation

The following observations led to an emphasis on using elliptic curves in
cryptography: The computation of discrete logarithms may be made intractable
by present technology. Computing an elliptic curve discrete logarithm in a
large prime order subgroup of an elliptic curve in exponential time using Pol-
lard’s rho method, the best algorithm known to date for calculating generic
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discrete logarithms. The quest of a lower-cost elliptic curve is a perennially
fascinating research subject. The computational cost determines the security
of the ECC. Smaller key sizes are a significant characteristic of ECC, which
prompted the initial motivation for this thesis. It is worth mentioning that the
comparable RSA key sizes for "the same degree of security" increase at a faster
rate since subexponential time attacks apply to the RSA cryptosystem. The
"traditional" Weierstrass form of an elliptic curve may be rapidly computed
in the case of cryptographic operations that include multiplications. One of
the most frequent tools of the elliptic curve based cryptographic operations
is scalar multiplication, which comprises addition operations on the points
on an elliptic curve. As a result, increasing the speed of point addition also
increases the speed of scalar multiplication and dependent protocols, and it
is an excellent area of investigation. Huff’s elliptic curves have not received
much attention, and there may be some spectacular discoveries in this topic.

1.3 Aims and Outcome

The primary aim of this thesis is to provide a new generalized Huff’s model
of elliptic curves that is helpful for cryptography and give the efficiency of
group operations on the new generalized Huff’s curve. Multiplication, squar-
ing, multiplication by a constant, addition/subtraction, and inversion is ex-
amples of group operation formulae. Inversion operations are much more
expensive than others. As a result, removing the inversion operation is the
first step toward improving the efficiency of scalar multiplication. Inversions
are included in affine point addition formulae for elliptic curve points. When
the curve is embedded in a projective space, however, the formulae become
inversion-free. Thus, different projective spaces have varying degrees of ef-
ficiency for each curve shape. Even though Homogeneous Projective Coor-
dinates are being presented more broadly in related research, the efficiency
diversity is noteworthy. The derivation of the several formulas in this work
were aided by computer software MATHEMATICA.
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1.4 Outline of the thesis

This thesis is organized as follows: the next chapter gives an overview of
cryptography and elliptic curves. In chapter 3, a brief study on Huff’s model
of elliptic curves. Chapter 4 introduces a new form of elliptic curves in gener-
alized Huff’s model and presents formulae for point addition and doubling
point on the curves, and evaluates the computational cost of point addition
and doubling. Chapter 5 shows that the new form of elliptic curves is bi-
rationally equivalent to the Weierstrass form of elliptic curves. Finally, the
conclusion of the thesis with remarks and recommendations in the last chap-
ter.
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Chapter 2

Cryptography and Elliptic Curves

Researchers spent considerable effort investigating cryptographic systems based
on more trustworthy trapdoor functions and succeeded in 1985 with the dis-
covery of a new approach [29], specifically one based on elliptic curves, which
were suggested as the foundation for the discrete logarithm group. Thus this
chapter provides an overview of the elliptic curves and their application in
cryptography.

2.1 History of Public-key Cryptography

In 1974, a proposal by Ralph Merkle [2] in an undergraduate project about
public-key construction was rejected as it was little understood at that time.
Two years later, the famous paper [13] entitled "New Directions in Cryp-
tography" by Whitfield Diffie and Martin Hellman expressed the concept of
a public-key cryptosystem. This paper contained groundbreaking contribu-
tions to the field of cryptography. After this breakthrough by Whitfield Diffie
and Martin Hellman, Merkle’s research appeared in 1982 as titled “Secure
communication over insecure channels” [28].

It is worth noting that the idea of a public-key cryptosystem was initially dis-
covered by James Ellis in 1969 and was kept a secret by the British government
until after his death in 1997 [1, 20]. Similarly, Malcolm Williamson and Clif-
ford Cocks at British Government Communication Headquarters discovered
Diffie-Hellman key exchange algorithm and the Rivest–Shamir–Adleman (RSA)

7



8 Cryptography and Elliptic Curves

[34, 35] public-key encryption system, respectively, before their rediscovery by
Diffie, Hellman, Rivest, Shamir, and Adleman [20].

Alice, Bob, and Eve are users on the same channel network. Suppose Alice
wants to communicate with Bob over the same channel without Eve knowing
the message. As Eve is an adversary user and wants to know what message is
communicated, Alice has to use some encryption that is hard for Eve to solve
to secure her message. In this scenario, Alice’s message could be encrypted
by secret-key or public-key. If Alice wishes to use a secret-key cryptosystem,
she must secretly share the same key to Bob. We can describe the procedure
of Alice using a secret-key cryptosystem to communicate her message to Bob.
Firstly, Alice and Bob have to choose a secret-key k only known to them and
secret to other users on the channel.

Provided that Alice wants to send a plaintext message m, she would require
a function f (m, k) to produce a ciphertext c. Alice then publicly sends the
ciphertext c. To recover the plaintext message m, Bob uses the function g(c, k).
The main advantage of a secret-key cryptosystem is that it is fast as it uses
only one key in encryption and decryption. However, the main disadvantage
of a secret-key cryptosystem is that the shared secret-key itself. This secret-
key could be discovered by an adversary and must be changed very often
with secure communication.

The second option for Alice is to use a public-key cryptosystem to encrypt her
message. We will now give an overview of how the Public-Key Cryptosystem
(PKC) is used. In [13], Diffie and Hellman define what PKC was and provided
its associated components known as a one-way function. One-way functions
are easy to compute; however, their inverse is challenging to compute. If one
knows the trapdoor information, then finding the inverse function becomes
easy. PKC consists of two keys, one is a private-key (kpriv), and the other
is a public-key (kpub). kpub is computed by some key generation algorithms
associated with kpriv. If Alice and Bob want to communicate a secret message,
they must use the same key exchange algorithm. Bob shares his public-key
(kpub Bob) to Alice. Any users on the same network could access kpub Bob. Its
private key could only decrypt any message encrypted by a public-key since
computing the inverse function is relativity as difficult without the trapdoor
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information. Thus, Alice encrypts the message with kpub Bob, and the cipher-
text c sends to Bob. Upon receiving the ciphertext c, Bob uses his private-key
(kpriv Bob) to decrypt the message. We note that even if Eve has c and kpub Bob,
she would not be able to decrypt the message as she does not have kpriv Bob.
Thus the security of private-keys is not compromised in PKC. The security of
PKC relies on hard computational problems. Now, let us explore some of the
computational problems.

2.2 Discrete Logarithm Problem

The structure for the discrete logarithm issue is now defined. To begin, we
shall define a group.

Definition 2.1. A set G is called a group on a binary operation ∗, denoted by
(G, ∗) if it satisfies the following four properties:

[Closure Law] For every a, b ∈ G, a ∗ b ∈ G.

[Identity Law] There is an element e ∈ G such that e ∗ a = a ∗ e = a for every
a ∈ G, e is an identity.

[Inverse Law] For every a ∈ G there is a (unique) b ∈ G such that a ∗ b =

b ∗ a = e, where b = a−1 ∈ G.

[Associative Law] a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G.

If, in addition, it satisfies the

[Commutative Law] a ∗ b = b ∗ a for all a, b ∈ G, then the group (G, ∗) is
called a commutative group or an abelian group [20].

The discrete logarithm problem is used in many cryptographic protocols. One
such protocol is key exchange protocol. In the paper [13], Diffie and Hellman
introduced a key exchange protocol based on the discrete logarithmic prob-
lem over a finite field Fp, where p is at least 1024 bits length prime.
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Theorem 2.2. (Primitive Root Theorem). Let p be a prime number. Then,
there exists an element g ∈ F∗p whose powers give every element of F∗p, i.e. F∗p
=
{

1, g , g2, g3, ..., gp−2}, where F∗p is a finite field. Elements with this property
are called primitive roots of F∗p or generators of F∗p . The order of F∗p is p− 1.

Proof. Proof. See [20] page 126.

By the Theorem 2.2, it means that for every nonzero element of Fp is equal to
some power of g. Here g is the generator of all nonzero elements of Fp. Then,
the Discrete Logarithm Problem (DLP) is to find x ∈ Fp which satisfies the
following:

gx ≡ h mod p⇐⇒ x ≡ loggh (mod p),

where h is an element of Fp.

Definition 2.3. Let G be a group whose group law is defined by ∗. The
Discrete Logarithm Problem for G is to be determined, for a, b ∈ G such that
there is an integer x satisfying the following:

a ∗ a ∗ a ∗ ... ∗ a︸ ︷︷ ︸
x times

= b.

2.3 Diffie–Hellman key Exchange Protocol

Again, take that Alice wants to publicly share a secret message to Bob through
an unsecured channel where Eve is an adversary of the same channel and
wants to know what Alice is communicating to Bob. To share the secret
message, both Alice and Bob have to agree on a large prime p and a generator
g ∈ Fp. This ensures that there is no risk of sharing information publicly.
Alice then picks a secret integer a ∈ Fp and does not reveal it to anyone.
Likewise, Bob also chooses a secret integer b ∈ Fp and keeps it secret to
himself. They both use their secret-key to compute their public-keys A and
B, respectively.
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A ≡ ga(mod p)︸ ︷︷ ︸
Alice computes

and B ≡ gb(mod p)︸ ︷︷ ︸
Bob computes

.

After computing their public-keys A and B, Alice and Bob share these on
an unsecured communication channel. Again, the adversary Eve gets to see
their computed values. Finally, Alice and Bob again use their secret integer
to compute:

A
′ ≡ Ba(mod p)︸ ︷︷ ︸
Alice computes

and B
′ ≡ Ab(mod p)︸ ︷︷ ︸

Bob computes

.

Note that it is clear that A
′

and B
′

are the same shared secret-key since,

A
′ ≡ Ba ≡ (gb)a ≡ gab ≡ (ga)b ≡ Ab ≡ B

′
mod p.

Example 2.4. Suppose Alice and Bob agree to use p = 13441 and g = 781.
Alice chooses her secret-key as a = 520 and Bob chooses his secret-key as
b = 830. They then compute their public-keys.

A ≡ 977 ≡ 781520(mod 13441)︸ ︷︷ ︸
Alice computes

and B ≡ 13345 ≡ 781830(mod 13441)︸ ︷︷ ︸
Bob computes

.

Alice and Bob then share their computed value A = 977 and B = 13345
publicly. Now their shared secret-key would be

7201 ≡ 781(520×830) ≡ 977830 ≡ 13345520 (mod 13441).

To see the communicated message Eve has to solve

781a ≡ 977 (mod 13441) or 781b ≡ 977 (mod 13441).

Eve can solve these values of a and b if p is small prime. In practical, the p
value must be at-least 1024 bits length (p ≈ 21024 bits) [36]. Then it will be
difficult for Eve to find the secret-keys of Alice and Bob.
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2.4 Weierstrass Long Form of Elliptic Curve

Definition 2.5. Let K be a finite field and K be its algebraic closure. Then
the elliptic curve defined in the projective plane P2(K) of a homogeneous
Weierstrass equation is of the form

E(K) : Y2Z + a1XYZ + a3YZ2 = X3 + a2X2Z + a4XZ2 + a6Z3 (2.1)

with a1, a2, a3, a4 ∈ K.

The curve could be written in the form

F(X, Y, Z) = Y2Z + a1XYZ + a3YZ2 − X3 − a2X2Z− a4XZ2 − a6Z3 (2.2)

and is smooth if the partial derivatives of the equation curve
∂F
∂X

,
∂F
∂Y

and
∂F
∂Z

does not vanish simultaneously at any point on the curve. If all three
partial derivatives of the curve vanish at a particular point P on E(K) then
the equation is singular, and point P ∈ E(K) is called a singular point. The
curve has one point at infinity namely (0 : 1 : 0) and is represented by O.

For simplicity, Weierstrass equation for the elliptic curve E(K) could be trans-

formed by using non-homogeneous coordinates x =
X
Z

and y =
Y
Z

to the
affine form as

E(K) : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6. (2.3)

If E is defined over a finite field K and char(K) represent characteristic of K

then with a1, a2, a3, a4 ∈ K and char(K) 6= 2, the equation could be simplified
by substitution y 7−→ 1

2(y− a1x− a3),and get as follows:
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1
4

(
y2 − x2a2

1 − 2xa1a3 − a2
3

)
= x3 + a2x2 + a4x + a6

y2 = 4x3 + (4a2 + a2
1)x2 +

2(2a4 + a1a3)x + a2
3 + 4a6.

For

b2 = 4a2 + a2
1, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6

gives a curve equation of

E : y2 = 4x3 + b2x2 + 2b4x + b6.

The other quantities as defined as follows:

b8 = a2
1a6 + 4a2a6 − a1a2a3 + a2a2

3 − a2
4,

c4 = b2
2 − 24b4,

c6 = −b3
2 + 36b2b4 − 216b6,

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6,

 =
c3

4
∆

,

ω =
dx

2y + a1x + a3
=

dy
3x2 + 2a2x + a4 − a1y

.

Moreover, if char(K) 6= 2, 3, the substitution (x, y) 7−→
(

x− 3b2

36
,

y
108

)
re-

moves the x2 term and yields a simpler equation

E : y2 = x3 + Ax + B, (2.4)

where A = −27c4 and B = −54c6
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Definition 2.6. The quantity ∆ is the discriminant of the Weierstrass equation
and  is the -invariant of the elliptic curve. ω is the invariant di f f erential
associated to the Weierstrass equation.

The Weierstrass equation is singular if ∆ = 0. The -invariant is related to an
isomorphism between elliptic curves. Two elliptic curves are isomorphic over
K if and only if they have the same -invariant.

Theorem 2.7. Let E be an elliptic curve over a finite filed K. Then the addition law
on E(K) has the following properties:

1. P + Q ∈ E(K) for all P, Q ∈ E(K). [Closure Law]

2. P +O = O + P = P for all P ∈ E(K). [Identity Law]

3. P + (−P) = O for all P ∈ E(K). [Inverse Law]

4. (P + Q) + R = P + (Q + R) for all P, Q, R ∈ E(K). [Associative Law]

5. P + Q = Q + P for all P, Q ∈ E(K). [Commutative Law]

Proof. For proof see [20].

2.5 The Group Law on Weierstrass Elliptic Curve

Let E(K) be an elliptic curve over a finite field K given by the Weierstrass
equation. Let P = (x1, y1) and Q = (x2, y2) be two points on E(K) such that
the line intersecting P and Q intersects the third point on E(K), namely R =

(x3,−y3). The point R is then reflected across the x-axis and it yields another
point R′ = (x3, y3). If we define the addition law by ⊕, then P⊕Q = R′.
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Figure 2.2: The additional law on a Weierstrass elliptic curve

Figure 2.2 shows that P and Q are two different points on E(K). To add P to
itself, noting that point Q on the curve could be moved as close to point P. In
the sense of limit, as Q approaches P, the line becomes a tangent to E(K) at
P.

P⊕Q = P⊕ P

= 2P.
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Figure 2.3: Adding a point P to itself on a Weierstrass elliptic curve

It is noted that addition of points on E(K) is possible, but there is another
scenario which is provided, that is P⊕ P

′
. This is where an additional point

O, which is at infinity is described. It is noted that O acts as the identity
element of E(K) under addition. Thus,

P⊕ P
′

= O,

P⊕O = P.

Definition 2.8. An elliptic curve E(K) is the set of solutions to a short Weier-
strass equation

E(K) : Y2 = X3 + AX + B, (2.5)
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together with an extra point O, where the constants A and B must satisfy
4A3 + 27B2 6= 0.

Take two points P and Q on E(K); if they are added, then it produces an-
other point R

′
. We have a zero element O at infinity, which satisfies identity

law (that is, P ⊕ O = O⊕P = P). Now, suppose there is another point Q
(that is, P, Q 6= O) on the same line which intersects the curve at another
point known as R, then the following addition is correct:

P⊕Q = Q⊕ P.

Furthermore, it could be shown that

(P⊕Q)⊕ R = P⊕ (Q⊕ R).

Finally, repeated addition could be described by

P⊕ P⊕ P⊕ P⊕ P⊕ P...⊕ P︸ ︷︷ ︸ = nP,
n times

where n ∈ K an integer. Thus, the elliptic curve E an additive group.

2.5.1 Affine Formulae

Let E be a non-singular elliptic curve over the field K defined by the Weier-
strass equation

E(K) : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,

where a1, a2, a3, a4, a6 ∈ K. As mentioned that there is an additional point
O which does not lie on E(K) but is used to fulfill the group axioms. The
additional formulas are as follow:
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Let P = (x1, y1) and Q = (x2, y2) be two different points on E such that
P 6= O and Q 6= O,

λ =


3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
if P = Q,

y2 − y1

x2 − x1
if P 6= ±Q,

and then x3 = λ2 + a1λ− x1− x2− a2, and y3 = −λ(x3− x1)− y1− a1x3− a3.
Then P + Q = (x3, y3).

To achieve addition on short Weierstrass equation, one can set a1, a2, a3 = 0,
a4 = A, and a6 = B on the above formulae of x3, y3 and λ. Thus, addition on
short Weierstrass equation is given by the same conditions as above with

P = (x1, y1) and Q = (x2, y2) be two different points on short Weierstrass
equation elliptic curve such that P 6= O and Q 6= O,

λ =


3x2

1 + A
2y1

i f P = Q,

y2 − y1

x2 − x1
i f P 6= ±Q,

and then x3 = λ2 + x1− x2 and y3 = −λ(x3− x1)− y1. Then P+ Q = (x3, y3).

2.5.2 Projective Coordinates

In regards to cryptography, projective coordinates are used to avoid the in-
version that appears in the affine form. Using projective coordinates, one can
reduce computational cost since inversion is costly. There are many varieties
of projective form.

The short Weierstrass form of elliptic curve defined by equation (2.5) could
be rewritten as

E(K)ω : Y2Z = X3 + AX2Z + BZ3.

The point (X1 : Y1 : Z1) is on E(K)ω with X1, Y1 ∈ E(K), char(K) 6= 2, 3,
and Z1 ∈ E(K). The projective point (X1 : Y1 : Z1) is equivalent to the affine
form (X1/Z1, Y1/Z1) and the point at infinity is O = (0 : 1 : 0).
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2.6 Elliptic Curve Diffie-Hellman Key Exchange Pro-

tocol

If Alice and Bob want to communicate a secret message using Elliptic Diffie-
Hellman key exchange protocol, then they have to agree to a particular elliptic
curve E(Fp) and a specific point P on E(Fp). Alice then picks a secret integer
nA and does not reveal it to anyone. Likewise, Bob also chooses a secret
integer nB and keeps it confidential to himself. They both use their secret-key
to compute their public-key QA and QB.

QA = nAP︸ ︷︷ ︸
Alice computes

and QB = nBP︸ ︷︷ ︸
Bob computes

.

After computing QA and QB, Alice and Bob share this on an unsecured com-
munication channel. Finally, Alice and Bob again use their secret integer to
compute

nAQB = (nAnB)P = nBQA,

which is the commonly shared secret-key of Alice and Bob.

2.7 Other Cryptographic Schemes and Models for

Elliptic Curves

Elliptic curves can be used to construct other cryptographic schemes such as
encryption schemes, digital signatures, and hash functions. But, their cre-
ations are not discussed in this write-up.

Other famous forms of elliptic curves existing in literature are Hessian curves
[4, 23], Jacobi quartics [8], Montgomery [30, 6], Edwards [3, 7, 15], Doubling-
oriented Doche–Icart–Kohel [14, 5] and Huff’s curve [21]. The next chapter
will visit Huff’s model of elliptic curves, however there is no intention to place
other elliptic curves models literature but are equally important to mathemat-
ical aspects and cryptography.
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2.8 Computational Cost on Elliptic Curves

To analyze the efficiency of the arithmetic on an elliptic curve, one must com-
pute the computational cost. To get optimal computational cost, one must
analyse the cost of point addition and doubling point on the curve E(K). In
this thesis, m represents multiplication between two curve variables, s repre-
sents squaring of a curve variable, a represents addition/subtraction of two
curve constants, and d represents multiplication by two curve constants.



Chapter 3

Huff’s Model

There has been a lot of development to Huff’s model of elliptic curves in
[11, 19, 24, 39, 32]. For instance, Joye et al. studied Huff’s elliptic curves in
2010 [23]. In 2012, Wu and Feng also carried out research on Huff’s curves
in [39]. A year later, Binary Huff’s curves were investigated by Devigne and
Joye [12]. In 2015, He et al. [19] studied generalized Huff’s curves. In 2018,
Orhon and Hisil also studied speeding of Huff’s model of elliptic curve [32].
This chapter, studies Huff’s Model of the elliptic curves as discussed by Joye
et al [12, 24]. We intend to study and summarize the work of the authors
mentioned above. However, there is no intention to deliver every aspect of
each paper or content of every paper.

3.1 Elliptic Curves by Gerald Huff and Peeples

In 1948, to study a diophantine problem, Huff considered the distance of
subsets of set S of the plane R2such that for all s1,s2 ∈ S, the distance between
s1 and s2 is a rational number [21]. Given that if a, b ∈ Q, S contains four
points (0, ±a) and (0, ±b) on the y-axis, and (x, 0) on the x-axis for some
x ∈ Q. The point (x, 0) must satisfy the equation x2 + a2 = u2 and x2 + b2 =

v2 with u, v ∈ Q. The homogeneous equation is of the form x2 + a2z2 = u2

and x2 + b2z2 = v2 defines a curve of genus 1 in P3. Later Huff and his
student Peeples [33] provided examples of curves that had positive rank over
Q. These examples provided large rational set distances of cardinality k > 4
such that there are k− 4 points on a line.

The non-homogeneous form of these genus 1 curve is equivalent to the curve

21
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ax(y2 − 1) = by(x2 − 1), (3.1)

where a, b ∈ Q . It is clearly seen that equation (3.1) over any finite field K

of odd characteristic defines an elliptic curve if a2 6= b2 and a, b 6= 0. In the
projective plane P2(K) equation (3.1) could be defined as

F(X, Y, Z) = aX(Y2 − Z2)− bY(X2 − Z2). (3.2)

One could verify that the partial derivatives
∂F
∂X

,
∂F
∂Y

and
∂F
∂Z

, of the curve
equation does not vanish simultaneously at three points of infinity
(1 : 0 : 0), (0 : 1 : 0), and (a : b : 0), however, vanish at a finite point
(x : y : 1) if and only if, ax = by together with equation (3.1) which suggest
that x2 = y2 and therefore a2 = b2. The point (1 : 1 : 1) in character 2, is
always singular and the families of curve defined by equation (3.1) does not
contain any smooth curve.

3.1.1 List of Huff’s Model of Elliptic Curves

The different families of Huff’s elliptic curves studied over the past decade
are listed below.

1. The curves over a field K, char(K) 6= 2 by Joye et al. in [24] are of the
form:

ax(y2 − 1) = by(x2 − 1), where a2 − b2 6= 0.

2. The generalized Huff’s curves over a field K, char(K) 6= 2 by Joye et al.
in [24] are of the form:

ax(y2 − d) = by(x2 − d), where abd(a2 − b2) 6= 0.

3. The generalized Huff’s curves over a field K, char(K) 6= 2 by Wu and
Feng in [39] are of the form:

x(ay2 − 1) = y(bx2 − 1), where ab(a− b) 6= 0.
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4. The binary Huff curves over a field K, char(K) = 2 by Joye et al. in [24]
are of the form:

ax(y2 + y + 1) = by(x2 + x + 1), where ab(a− b) 6= 0.

5. The generalized binary Huff curves over a field K, char(K) = 2 by Joye
et al. in [24] are of the form:

ax(y2 + f y + 1) = by(x2 + f x + 1), where ab f (a− b) 6= 0.

6. The generalized Huff’s curves over a field K, char(K) 6= 2 by Ciss and
Sow in [11] are of the form:

ax(y2 − c) = by(x2 − d), where abcd(a2c− b2d) 6= 0.

7. The generalized Huff’s curves over finite field K, char(K) 6= 2 by Orhon
and Hisil in [32] are of the form:

y(1 + ax2) = cx(1 + dy2), where acd(a− c2d) 6= 0.

3.1.2 Huff’s Model of Elliptic Curves by Joye, Tibouchi and

Vergnaud

Let K be a field of characteristic 6= 2. Huff’s model of an elliptic curve satis-
fying the set of projective points (X : Y : Z) ∈ P2(K) is of the form

E(K) : aX(Y2 − Z2) = bY(X2 − Z2), (3.3)

where a, b ∈ K and a2 6= b2.
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P1
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⊖P3
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Figure 3.1: An Example of Huff’s curve over R

For equation (3.3), the neutral element is O = (0 : 0 : 1), which intersects
the curve with multiplicity 3. The tangent line at O is aX = bY; thus O is a
point of inflection. Then the elliptic curve E(K) could be described; with the
identity O and whose group law, defined by ⊕.

For any line intersecting E(K) at three points as P1, P2 and, P3 the following
property P1 ⊕ P2 ⊕ P3 = O is true. Figure 3.1 shows the line intersection at
points P1, P2 and, P3. The inverse of point P1 = (X1 : Y1 : Z1) is P1 = (X1 :
Y1 : −Z1). Finally, the sum of P1 and P2 is P1 ⊕ P2 = 	P3. This elliptic curve
have three points at infinity, (1 : 0 : 0), (0 : 1 : 0) and (a : b : 0).

3.1.3 Affine Formula

Given that points P1 = (x1, y1) and P2 = (x2, y2) are on

E(K) : ax(y2 − 1) = by(x2 − 1), (3.4)
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the line intersects the third point P3 = (x3, y3). Then the following is true:

1. Dedicated addition: P1 ⊕ P2 where P1 6= P2.,

x3 =
(x1 − x2)(y1 + y2)

(1− x1x2)(y1 − y2)
and y3 =

(x1 + x2)(y1 − y2)

(x1 − x2)(1− y1y2)
.

2. Unified addition

x3 =
(x1 + x2)(1 + y1y2)

(1 + x1x2)(1− y1y2)
and y3 =

(y1 + y2)(1 + x1x2)

(1− x1x2)(1 + y1y2)
.

3. Doubling: 2P1

2x1 =
2x1(1 + y2

1)

(1 + x2
1)(1− y2

1)
and 2y1 =

(2y1(1 + x2
1)

(1− x2
1)(1 + y2

1)
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Chapter 4

Generalized Huff’s Model of
Elliptic Curves

The search for a new form of elliptic curves is fascinating, and if one gets
a considerably faster curve, other models would be an outstanding achieve-
ment. This chapter introduces a new form of elliptic curve in generalized
Huff’s model. These models of Huff’s elliptic curves endow with addition
are group over a finite field. We provide point addition, doubling point, and
computation cost comparison with other Huff’s families of the elliptic curve.

4.1 Introduction to Generalized Huff’s Model of

Elliptic Curves

Let K be a finite field of char(K) 6= 2. Let’s define an elliptic curve, denoted
by E, over K as

E(K) : ax
(

y2 + xy + f
)
= by

(
x2 + xy + g

)
, (4.1)

where a, b, f , g ∈ K and ab f g(a− b) 6= 0 . The -invariant of E(K) is given by
256(a2 f 2+ab f g+b2g2)

3

a2b2 f 2g2(a f+bg)2 . The inflection point (0 : 0 : 1) of E(K) has the tangent line

bgy = a f x that passes through the curve with multiplicity 3; thus O = (0 :
0 : 1) is a neutral point of E(K). Furthermore, group law is defined as

27
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⊕. Figure 4.1 shows that the line passing through the points P and Q, and
intersecting at third point R on E(K).

Let P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), and R = (X3 : Y3 : Z3) be three
points on E(K). Then, P⊕Q could be obtained by the line connecting R and
O that intersects at third point 	R on E(K) such that
P⊕Q = 	R which implies that P⊕Q⊕ R = O. In particular, the inverse of
the point P is 	P = (X1 : Y1 : −Z1). It is clear that the curve E(K) posses
commutative law. There are three points at infinity, namely (1 : 0 : 0),
(0 : 1 : 0), and (a : b : 0) on E(K), and the sum of any two points at infinity
equals to the third point. For any point (X1 : Y1 : Z1), when Z1 6= 0, for
some real number α and γ bounded by the field K, it is observed that

(1 : 0 : 0) ⊕ (X1 : Y1 : Z1) = (αZ2
1 : −X1Y1 : X1Z1) and

(0 : 1 : 0) ⊕ (X1 : Y1 : Z1) = (−X1Y1 : γZ2
1 : Y1Z1).

⊖R

R

O

Q

P

-4 -2 0 2 4

-4

-2

0

2

4

Figure 4.1: An example of the elliptic curve E(K)

Furthermore, note that
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(a : b : 0) ⊕ (X1 : Y1 : Z1) = (0 : 1 : 0) ⊕ (αZ2
1 : −X1Y1 : X1Z1),

therefore

(a : b : 0)⊕ (X1 : Y1 : Z1) =

(a : b : 0) if (X1 : Y1 : Z1) = (0 : 0 : 1)

(−αY1Z1 : −γX1Z1 : X1Y1) otherwise
.

Doubling point is achieved if P = Q, thus the line connecting P and Q is the
tangent at the point P.

4.2 Affine Formulae

This subsection provides explicit formulae for the group law for the elliptic
curve defined by equation (4.1).

Let P = (x1, y1), Q = (x2, y2), and R = (x3, y3) be the three different points
on E(K) such that R is obtained by connecting a line through P and Q. Let

the secant line joining P and Q has the slope defined as λ =
y2 − y1

x2 − x1
. Thus,

y = λx + β is the equation of the secant line passing through the points P,
Q, and R, where β = y1 − λx1. For the curve equation (4.1), replace y with
λx + β. Then,

ax((λx + β)2 + x(λx + β) + f ) = b(λx + β)

(x2 + x(λx + β) + g).

This implies that (4.2)

x
(

a f + aβ2
)
+ x2(aβ + 2aβλ)

+x3
(

aλ + aλ2
)
= (bgβ + x

(
bβ2 + bgλ

)
+ x2(bβ + 2bβλ) + x3

(
bλ + bλ2

)
. (4.3)
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Let
A = aβ− bβ + 2aβλ− 2bβλ

and
B = aλ− bλ + aλ2 − bλ2.

Then, equation (4.2) becomes

− bgβ + x
(

a f + aβ2 − bβ2 − bgλ
)
+ Ax2 + Bx3 = 0. (4.4)

.

Note that

x1 + x2 + x3 = −A
B

(4.5)

−x3 = x1 + x2 +
aβ− bβ + 2aβλ− 2bβλ

aλ− bλ + aλ2 − bλ2 ,

substituting β = y1 − λx1 and λ =
y2 − y1

x2 − x1
yields

x3 = −
(

x1 + x2 +
(x1 − x2 + 2y1 − 2y2) (−x2y1 + x1y2)

(y1 − y2) (x1 − x2 + y1 − y2)

)
= −x1 − x2 −

(x1 − x2 + 2y1 − 2y2) (−x2y1 + x1y2)

(y1 − y2) (x1 − x2 + y1 − y2)
,

which simplifies to

x3 = − (x1 − x2) (y1 (x1 + y1)− y2 (x2 + y2))

(y1 − y2) (x1 − x2 + y1 − y2)
. (4.6)

By symmetry that it could be claimed that,
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y3 = −
(y1 − y2)

(
x2

1 + x1y1 − x2 (x2 + y2)
)

(x1 − x2) (x1 − x2 + y1 − y2)
. (4.7)

Thus, this is an evidence that the curve E(K) has three points
P = (x1, y1), Q = (x2, y2), and R = (x3, y3). Observe that the inverse of the
point R is 	R = (−x3,−y3). Note that point R = (x3, y3) is computed only
when x1 6= x2, y1 6= y2, and x1 − x2 + y1 − y2 6= 0 and the addition formula
used in the affine coordinate system could not be employed for doubling
points since x1 6= x2 and y1 6= y2.

Theorem 4.1. Let E(K) be a elliptic curve defined by equation (4.1) with ab f g(a−
b) 6= 0 and points P, Q, and O = (0, 0) on E(K) . O is a neutral point. Then E
has the following properties.

1. If P = O, then P⊕Q = Q.

2. Otherwise, if Q = O, then P⊕Q = P.

3. Otherwise, let P = (x1, y1) and Q = (x2, y2).

4. If −x1 = x2 and −y1 = y2, then P⊕Q = O.

5. Otherwise, let

x3 = − (x1−x2)(y1(x1+y1)−y2(x2+y2))
(y1−y2)(x1−x2+y1−y2)

and y3 = − (y1−y2)(x2
1+x1y1−x2(x2+y2))

(x1−x2)(x1−x2+y1−y2)
.

Then P⊕Q = (−x3,−y3)

Proof. Parts (1.) and (2.) are a similar concept and is easy to see. For (1.), P is
the neutral point (0,0), then the line through P and Q intersects E with the of 3,
as P, Q and −Q. To obtain P⊕Q, one must take the inverse of the third point
of the intersection. Thus, −(−Q) = Q. The similar proof follows for (2.). Part
(4.) is also easily obtained. If P = (x1, y1) and Q = (x2, y2) = (−x1, y1) then
the third point of intersection of P and Q is O. The inverse of O is −O=O.
To prove (5.), it is necessary to take algebraic step. If points P = (x1, y1) and
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Q = (x2, y2) are two distinct points on E and neither of them equal to O, then
the line through points P and Q has the slope λ. The line equation could be
written as y = λx + β, where β = y1 − λx1. Substituting the line equation in
E(K) gives us the equation (4.3). It is clear that x1 and x2 are two roots of the
above cubic equation; thus, it could be written that,

(x− x1)(x− x2)(x− x3) = x3 + (−x1 − x2 − x3)x2

+ (xx2 + x3x2 + x1x3)x− x1x2x3.

Then the proof follows the from equation (4.5) and equation (4.6) (See section
4.1).

We now define a point of infinity on E(K) as O = (0, 0). For the point
P = (x1, y1), 	P = (−x1,−y1). Thus, it follows that

x3 = − (x1 − x2) (y1 (x1 + y1)− y2 (x2 + y2))

(y1 − y2) (x1 − x2 + y1 − y2)

= − (x1 −−x1) (y1 (x1 + y1)−−y2 (−x2 − y2))

(y1 −−y2) (x1 −−x2 + y1 −−y2)

= − (x1 + x1) (y1 (x1 + y1) + y1 (−x1 − y1))

(y1 −−y1) (x1 −−x1 + y1 −−y1)

= − (2x1) (0)
(2y1) (2x1 + 2y1)

= 0

and
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y3 = −
(y1 − y2)

(
x2

1 + x1y1 − x2 (x2 + y2)
)

(x1 − x2) (x1 − x2 + y1 − y2)

= −
(y1 −−y1)

(
x2

1 + x1y1 −−x1 (−x1 − y1)
)

(x1 −−x1) (x1 −−x1 + y1 −−y1)

= −
(2y1)

(
x2

1 + x1y1 + x1 (−x1 − y1)
)

(x1 + x1) (x1 + x1 + y1 + y1)

= − (2y1) (0)
(2x1) (2x1 + 2y1)

= 0.

Thus P⊕ (	P) = O.

Corollary 4.2. The identity O is always on the elliptic curve defined by

E : ax(y2 + xy + f ) = by(y2 + xy + g),

where ab f g(a− b) 6= 0.

Theorem 4.3. A line cutting E(K) at three distinct points namely P,Q, and R. The
associative law on these points is equivalent to O = (0, 0).

Proof. To show that the curve E(K) holds associative law, that is
P⊕ (Q⊕ R) = (P⊕Q)⊕ R.
For x-coordinates, the addition becomes,

Q⊕ R =
(x2 − x3) (y2 (x3 + y2)− y3 (x3 + y3))

(y2 − y3) (x2 − x3 + y2 − y3)
,

and by equation (4.1),

P =
(x2 − x3) (y2 (x3 + y2)− y3 (x3 + y3))

(y2 − y3) (x2 − x3 + y2 − y3)
,

then
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P⊕ (Q⊕ R) = − (x2 − x3) (y2 (x3 + y2)− y3 (x3 + y3))

(y2 − y3) (x2 − x3 + y2 − y3)
+

(x2 − x3) (y2 (x3 + y2)− y3 (x3 + y3))

(y2 − y3) (x2 − x3 + y2 − y3)
= 0.

It follows that,

(P⊕Q)⊕ R = − (x1 − x2) (y1 (x1 + y1)− y2 (x2 + y2))

(y1 − y2) (x1 − x2 + y1 − y2)
+

(x1 − x2) (y1 (x1 + y1)− y2 (x2 + y2))

(y1 − y2) (x1 − x2 + y1 − y2)
= 0.

For y-coordinates, the following addition holds,

P⊕ (Q⊕ R) = −
(y2 − y3)

(
x2

2 + x2y2 − x3 (x3 + y3)
)

(x2 − x3) (x2 − x3 + y2 − y3)

+
(y2 − y3)

(
x2

2 + x2y2 − x3 (x3 + y3)
)

(x2 − x3) (x2 − x3 + y2 − y3)
.

= 0,

and

(P⊕Q)⊕ R = −
(y1 − y2)

(
x2

1 + x1y1 − x2 (x2 + y2)
)

(x1 − x2) (x1 − x2 + y1 − y2)
+

(y1 − y2)
(
x2

1 + x1y1 − x2 (x2 + y2)
)

(x1 − x2) (x1 − x2 + y1 − y2)
= 0.

In both scenarios the addition gives O. Now to get final point one must reflect
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O on O (that is, O ⊕O), however O is the neutral point thus, we have

(P⊕Q)⊕ R = P⊕ (Q⊕ R).

4.2.1 Doubling Point

The slope of the tangent line to the curve defined by equation (4.1) could be
computed by implicit differentiation. Thus, by differentiation of E(K) with
respect to x, the equation (4.1) becomes,

a f + 2axy + ay2 + ax2y′ + 2axyy′ = 2bxy + by2 + bgy′ + bx2y′ + 2bxyy′

y′ =
a f + 2axy + ay2 − 2bxy− by2

bg− ax2 + bx2 − 2axy + 2bxy
.

For the point P = (x1, y1), the slope could be describe as

λp =
a f + 2ax1y1 + ay2

1 − 2bx1y1 − by2
1

bg− ax2
1 + bx2

1 − 2ax1y1 + 2bx1y1
=

a f + (a− b)y1 (2x1 + y1)

bg− (a− b)x1 (x1 + 2y1)
.

Let

A1 = a f x1 +
(
2a f + bg + (a− b)x2

1
)

y1, A2 = 3(a− b)x1y2
1 + 2(a− b)y3

1,
A3 = (bg− (a− b)x1 (x1 + 2y1))

and

B1 = (a f + (a− b)y1 (2x1 + y1)), B2 = 2(−a + b)x3
1 + bgy1 + 3(−a + b)x2

1y1,
B3 = x1

(
a f + 2bg + (−a + b)y2

1
)
.

We claim that
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x2 = − A3 (A1 + A2)(
a f + bg + (−a + b)x2

1 + (a− b)y2
1

)
(a f + (a− b)y1 (2x1 + y1))

(4.8)

and

y2 = − B1 (B2 + B3)(
a f + bg + (−a + b)x2

1 + (a− b)y2
1

)
(bg− (a− b)x1 (x1 + 2y1))

(4.9)

are the second coordinates of the point of intersection for the tangent line at
P.

The claim could be proven simply by checking the slope given by

λ =
y2 − y1

x2 − x1
,

and by simplification, the slope could be obtain as

λ =
a f + (a− b)y1 (2x1 + y1)

bg− (a− b)x1 (x1 + 2y1)

which have the same slope as λp.

4.3 Projective Coordinates Formulae

Let x =
X
Z

, y =
Y
Z

, and Z = 1 [16, 36], then the affine coordinate of equation
(4.1), becomes
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a
X
Z

(
Y2

Z2 +
XY
Z2 + f

)
= b

Y
Z

(
X2

Z2 +
XY
Z2 + g

)
.

Finally, multiplying by Z3 on both the sides to get rid of denominators and
achieve the projective form of the curve equation

E(K) : aX
(

Y2 + XY + f Z2
)
= bY

(
X2 + XY + gZ2

)
, (4.10)

where a, b, f , g ∈ K and ab f g(a− b) 6= 0.

For the points P = (X1, Y1, Z1) and Q = (X2, Y2, Z2), the third point of in-
tersection known as R = (U3, V3, W3) of the line joining P and Q has the
coordinates as follow:

U3 =(X2Z1 − X1Z2)
2(Y2Z2

1(X2 + Y2)−Y1Z2
2(X1 + Y1)),

V3 =(Y2Z1 −Y1Z2)
2(X2Z2

1(X2 + Y2)− X1Z2
2(X1 + Y1)),

W3 =− Z1Z2(X2Z1 − X1Z2)(Y2Z1 −Y1Z2)(Z1(X2 + Y2)− Z2(X + Y1)).
(4.11)

For doubling points, the coordinates are as follows:

U2 = −(X1(a− b)(X + 2Y1)− bgZ2
1)

2

(Y1(a− b)(X1 + Y1)(X1 + 2Y1) + Z2
1(a f X1 + (2a f + bg)Y1)),

V2 = −(Y1(a− b)(2X1 + Y1) + a f Z2
1)

2

(−X1(a− b)(X1 + Y1)(2X1 + Y1) + Z2
1(X1(a f + 2bg) + bgX1)),

W2 = Z1(Y1(a− b)(2X1 + Y1) + a f Z2
1)(−X1(a− b)(X1 + 2Y1) + bgZ2

1)

(−(a− b)(X2
1 −Y2

1 ) + (a f + bg)Z2
1). (4.12)

Theorem 4.4. Let K be a finite field of char(K) 6= 2. Let P1 = (X1, Y1, Z1) and
P2 = (X2, Y2, Z2) be two points on the elliptic curve defined by equation (4.10).
Then, the addition formula given by equation (4.8) is valid provided that X1Z2 6=
X2Z1, Y1Z2 6= Y2Z1, and X1Z2 + Y1Z2 6= X2Z1 + Y2Z1.



38 Generalized Huff’s Model of Elliptic Curves

Proof. Let P1 and P2 be finite points, then P1 = (x1, y1), and P2 = (x2, y2),
where (x1, y1) 6= (0, 0) and (x2, y2) 6= (0, 0) . The point addition given
by the equations (4.5) and (4.6) is only valid if x1 6= x2, y1 6= y2 and x1 −
x2 + y1 − y2 6= 0, which translate to projective coordinates as X1Z2 6= X2Z1,
Y1Z2 6= Y2Z1, and X1Z2 + Y1Z2 6= X2Z1 + Y2Z1, respectively.

It remains to analyze that the condition is satisfied at the infinity points. The
points at infinity are (1 : 0 : 0), (0 : 1 : 0), and (a, b, 0), if P1 or P2 ∈ {(1 :
0 : 0), (0 : 1 : 0)}; then X1Z2 6= X2Z1, Y1Z2 6= Y2Z1, and X1Z2 + Y1Z2 6=
X2Z1 + Y2Z1 is not satisfied. Since P1 /∈ {O, (1 : 0 : 0), (0 : 1 : 0)}, then the
addition law is valid for P2 = (a : b : 0) as mentioned earlier.

4.3.0.1 Computational Cost Analysis on Projective Coordinates

We evaluate the efficiency of point addition and doubling point on the curve
E(K). The computational cost ratio between a square (s) and multiplication
(m) is typically s = 0.8m. Other operations such as addition/subraction (a)
and (d) are omitted as computation cost is lower for these operations.

Projective coordinates may be preferred for faster arithmetic than the affine
formula. The affine formulae are given by equations (4.5) and (4.6) for the
addition of two different points on E(K) is described by equation (4.10).

The cost of a multiplication be m and the cost of a square be s in the field K.
Then, following is achieved,

m1 = X1Z2, m2 = X2Z1, m3 = Y1Z2, m4 = Y2Z1,

m5 = m4(m2 + m4), m6 = m3(m1 + m3), m7 = m2(m2 + m4),
m8 = m1(m1 + m3), m9 = −Z1Z2,

s1 = (m2 −m1)
2, s2 = (m4 −m3)

2, and

U3 = s1(m5 −m6), V3 = s2(m7 −m8),
W3 = m9(m2 −m1)(m4 −m3)(m2 + m4 −m1 −m3).
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Therefore, the total cost of point addition on the curve E(K) is 14m + 2s.

For the doubling point as described by equation (4.5), we have

s1 = Z2
1 , s2 = X2

1, s3 = Y2
1 ,

m1 = X1(a− b)(X1 + 2Y1), m2 = (X1 + Y1)(X1 + 2Y1),
m3 = s1(a f X1 + Y1(2a f + bg)), m4 = (a− b)Y1m2, m5 = Y1(a− b)(2X1 + Y1)

m6 = (X1 + Y1)(2X1 + Y1), m7 = s1((a f + 2bg)X1 + bgY1),
m8 = −X1m6(a− b), m9 = (m5 + a f s1)((a− b)(s2 + s3) + s1(a f + bg))

U2 = −(m1 − bgs1)
2(m3 + m4), V2 = −(m5 + a f s1)

2(m7 + m8), and

W2 = −m1m9Z1.

Therefore, the total cost of doubling points on the curve E(K) is 13m + 5s.

4.4 Jacobian Coordinates Formulae

Let x =
X
Z2 , y =

Y
Z3 , and Z = 1 [16, 36]. Then the affine coordinate of

equation (4.1), after simplification becomes,

E(K) : aX(Y2 + XYZ + f Z6) = bY(XZ2 + XYZ + gZ6), (4.13)

where a, b, f , g ∈ K and ab f g(a− b) 6= 0.

For the points P = (X1, Y1, Z1) and Q = (X2, Y2, Z2), the third point of in-
tersection known as R = (U3, V3, W3) of the line joining P and Q has the
coordinates as follow:
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U3 = −Z1Z2(X2Z2
1 − X1Z2

2)
2(Y2

2 Z6
1 + X2Y2Z6

1Z2 −Y1Z6
2(Y1 + X1Z1)),

V3 = −(Y2Z3
1 −Y1Z3

2)
2(X2Y2Z5

1 + X2
2Z5

1Z2 − X1Z5
2(Y1 + X1Z1)),

W3 = Z2
1Z2

2

(
(Y2Z3

1 −Y1Z3
2)
)

(X2Z3
1Z2 − X1Z1Z3

2)(Y2Z3
1 + X2Z3

1Z2 − Z3
2(Y1 + X1Z1)). (4.14)

For doubling points, the coordinates are as follows:

U2 = −Z1

(
(2X1Y1(−a + b) + (−a + b)X2

1Z1 + bgZ5
1)
)

2

(2(a− b)Y3
1 + 3(a− b)X1Y2

1 Z1 + a f X1Z7
1

+Y1Z2
1((a− b)X2

1 + (2a f + bg)Z4
1)),

V2 = −((a− b)Y2
1 + 2(a− b)X1Y1Z1 + a f Z6

1)
2

(3(−a + b)X2
1Y1Z1 + 2(−a + b)X3

1Z2
1 +

bgY1Z5
1 + X1((−a + b)Y2

1 + (a f + 2bg)Z6
1)),

W2 = Z3
1(2(−a + b)X1Y1 + (−a + b)X2

1Z1 + bgZ5
1)

((a− b)Y2
1 + 2(a− b)X1Y1Z1 + a f Z6

1)(
(a− b)Y2

1 + (−a + b)X2
1Z2

1 + (a f + bg)Z6
1

)
. (4.15)

The costs of point addition and doubling points on the curve E(K) are 32m +

4s and 29m + 5s, respectively.

4.5 Lopez-Dahab Coordinates Formuale

Let x =
X
Z

, y =
Y
Z2 , and Z = 1 [16, 36]. Then the affine coordinate of equation

(4.1) becomes

E(K) : aX(Y2 + XYZ + f Z5) = bY(XZ2 + XY + gZ6), (4.16)
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where a, b, f , g ∈ K and ab f g(a− b) 6= 0.

For the points P = (X1, Y1, Z1) and Q = (X2, Y2, Z2), the third point of in-
tersection known as R = (U3, V3, W3) of the line joining P and Q has the
coordinates as follow:

U3 = −Z1Z2(X2Z1 − X1Z2)
2(Y2

2 Z4
1 + X2Y2Z4

1Z2 −Y1Z4
2(Y1 + X1Z1)),

V3 = −
(
(Y2Z2

1 −Y1Z2
2)
)

2(X2Y2Z3
1 + X2

2Z3
1Z2 − X1Z3

2(Y1 + X1Z1)), and

W3 = Z2
1Z2

2(X2Z1 − X1Z2)(Y2Z2
1 −Y1Z2

2)

(Y2Z2
1 + Z2(X2Z2

1 − Z2(Y1 + X1Z1))). (4.17)

For doubling points, the coordinates are as follow:

U2 = −Z1(2(−a + b)X1Y1 + (−a + b)X2
1Z1 + bgZ3

1)
2

(2(a− b)Y3
1 + 3(a− b)X1Y2

1 Z1 + a f X1Z5
1

+Y1Z2
1((a− b)X2

1 + (2a f + bg)Z2
1)),

V2 = −((a− b)Y2
1 + 2(a− b)X1Y1Z1 + a f Z4

1)
2

(3(−a + b)X2
1Y1Z1 + 2(−a + b)X3

1Z2
1 + bgY1Z3

1 +

X1((−a + b)Y2
1 + (a f + 2bg)Z4

1)), and

W2 = Z2
1(2(−a + b)X1Y1 + (−a + b)X2

1Z1 + bgZ3
1)

((a− b)Y2
1 + 2(a− b)X1Y1Z1 + a f Z4

1)

((a− b)Y2
1 + (−a + b)X2

1Y2
1 + (a f + bg)Z4

1). (4.18)

The costs of point addition and doubling point on the curve E(K) are 32m +

6s and 26m + 5s, respectively.
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4.6 Embedding of Huff’s Model of Elliptic Curves

into P1×P1

It is noted that computational cost is higher while using projective, Jocobian
or Lopez-Dahab. Thus changing the form of the curve could yield a better
result.

Theorem 4.5. The elliptic curve E(K) : ax(y2 + xy + f = by(x2 + xy + g) could

be written as E(K) : x(y2 − c) = y(x2 − d), where c =
−a f
a− b

and d =
bg

a− b
.

Proof. First note that E(K) : ax(y2 + xy + f = by(x2 + xy + g) has

axy2 + ax2y + a f x− bx2y− bxy2 − bgy = 0,

axy2 − bxy2 + a f x + ax2y− bxy2 − bgy = 0,

x(ay2 − by2 + a f ) + y(ax2 − bx2 − bg) = 0 , and

x((a− b)y2 + a f )− y(−x2(a− b) + bg) = 0.

Finally, by scaling the equations by a− b since a− b 6= 0. Then E(K) has the
following forms,

x((a− b)y2 + a f )
a− b

− y(−x2(a− b) + bg)
a− b

= 0,

x
(

y2 +
a f

a− b

)
− y

(
−x2 +

bg
a− b

)
= 0.

Let c =
−a f
a− b

and d =
bg

a− b
then the equation could be simplify as follows,

xy2 − cx− yx2 + yd = 0

and finally,

E(K) : x(y2 − c) = y(x2 − d).
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Note that the elliptic curve given by E(K) : ax(y2 − c) = by(x2 − d) is a
generalized Huff’s elliptic curve by Ciss and Sow [11].

4.6.1 Efficiency of Elliptic Curve E(K) : x(y2− c) = y(x2− d)

According to Ciss and Sow [11], their model of Huff’s elliptic curve is

E(K) : ax(y2 − c) = by(x2 − d), (4.19)

where abcd(a2c − b2d) 6= 0. It is evident that the proposed curve given by
equation (4.18) has unified formulas for point addition and doubling point.
The model by Ciss and Sow has unified formulas for point addition and
doubling point. According to Ciss and Sow [11], the point addition on the
curve is given by equation (4.19) and the doubling point is given by equation
(4.20).

(x1, y1) + (x2, y2) =


x3 =

d(x1 + x2)(c + y1y2)

(d + x1x2)(c− y1y2)
,

y3 =
c(y1 + y2)(d + x1x2)

(c + y1y2)(d− x1x2)
.

(4.20)

[2](x1, y1) =


x3 =

2dx1(c + y2
1)

(d + x2
1)(c− y2

1)
,

y3 =
2cy1(d + x2

1)

(c + y2
1)(d− x2

1)
.

(4.21)

As shown by Ciss and Sow in [11] the total cost of point addition and dou-
bling point is 12m+4d and 7m+5s+4d. The same results will be there for the
proposed curve since point addition, and doubling point formulas do not
include curve constant ′a′ and ′b′.
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4.6.2 Embedding of E(K) : ax(y2 − c) = by(x2 − d) into P1 ×
P1

The projective closure of elliptic curve defined by equation (4.1) in P1×P1 is
given by

E(K) = {(X : Z), (Y : T) ∈ P1 ×P1 : aXZ(Y2 − cT2) = bTY(X2 − dZ2)}.
(4.22)

The formula for point addition and doubling point then corresponds to the
following:

((X1 : Z1), (Y1 : T1)) + ((X2 : Z), (Y2 : T2)) =

{(d(XZ1 + X1Z2)(cT1T2 + Y1Y2) : (cT1T2 −Y1Y2)(dZ1Z2 + X1X2)),

(c(T2Y1 + T1Y2)(dZ1Z2 + X1X2) : (cT1T2 + Y1Y2)(X1X2 − dZ1Z2))}. (4.23)

[2]((X1 : Z1), (Y1 : T1)) =

{(2dX1Z1(cT2
1 + Y2

1 ) : (cT2
1 −Y2

1 )(dZ2
1 + X2

1)),

(2cT1Y1(dZ2
1 + X2

1) : −(cT2
1 + Y2

1 )(X2
1 − dZ2

1))}. (4.24)

Cost for Point Addition

m1 = X1X2, m2 = dZ1Z2, m3 = cT1T2, m4 = Y1Y2,

m5 = T1Y2, m6 = X2Z1, m7 = X1Z2, m8 = T2Y1,

X3 = d(XZ1 + X1Z2)(cT1T2 + Y1Y2) = d(m3 + m4)(m6 + m7),

Z3 = cT1T2 −Y1Y2)(dZ1Z2 + X1X2) = (m3 −m4)(m1 + m2),

Y3 = c(T2Y1 + T1Y2)(dZ1Z2 + X1X2) = c(m8 −m5)(m6 + m7),

T3 = cT1T2 + Y1Y2)(X1X2 − dZ1Z2) = −(m3 + m4)(m1 −m2). (4.25)
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The total cost is 12m + 6a + 4d which is same as using projective coordinates.

Cost for Doubling Point

s1 = X2
1, s2 = Y2

1 , s3 = T2
1 , s4 = Z2

1 ,

X3 = 2dX1Z1(cT2
1 + Y2

1 ) = 2dX1Z1(cs3 + s2),

Z3 = (cT2
1 −Y2

1 )(dZ2
1 + X2

1) = (cs3 − s2)(s1 + ds4),

Y3 = 2cT1Y1(dZ2
1 + X2

1) = 2cT1Y1(s1 + ds4), and

T3 = −(cT2
1 + Y2

1 )(X2
1 − dZ2

1) = −(cs3 + s2)(s1 − ds4). (4.26)

The total cost comes to 6m + 4s + 4a + 4d, which is less than the cost given
by Ciss and Sow and other coordinate systems. Using embedding of E(K) :

ax(y2 − c) = by(x2 − d) into P1 × P1 and c =
−a f
a− b

and d =
bg

a− b
have

improved the proposed elliptic curves computational cost. One can notice
that the curve described by Ciss and Sow has higher cost when computing
2P then found by embedding E(K) into P1 ×P1.

4.7 Rational Points on E(Fq)

The new form of Huff’s model of elliptic curves is defined as

E(Fq) : ax
(

y2 + xy + f
)
= by

(
x2 + xy + g

)
, (4.27)

where a, b, f , g ∈ Fq and ab f g(a − b) 6= 0 by replacing the field K by Fq,
where q is a prime in the equation (4.1). Observe that for each x, the curve
(4.24) yields at most two values for y; and the point of infinity (0, 0) is always
on the curve E(Fq). Thus, an upper bound could be set for the number of
rationals on E(Fq) as
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#E(Fq) ≤ 2q + 1.

However, computing the exact number of points on the curve E(Fq) is a chal-
lenge to us. However, Hasse’s Theorem [18] on elliptic curve E(Fq) provides
an estimate for the number of rational points over a finite field Fq as

| #E(Fq)− (q + 1) | ≤ 2
√

q.

For the understanding purpose, let’s discuss the following method:

The curve (4.24) can be written be as

E(Fq) : a f x +
(
−bg + ax2 − bx2

)
y + (ax− bx)y2 = 0. (4.28)

This may be seen as a quadratic equation in y. The discriminant of (4.27) can
be calculated by

∆ = −4a f x(ax− bx) +
(
−bg + ax2 − bx2

)2
(4.29)

and y can be rational if and only if ∆ = r2 for some rational r. In this senario,
one can easily find some points on the curve (4.24) by simply assigning values
of a, f , and g and solving for b. The following toy example shows how one
can obtain y coordinates and compute point addition and doubling point.

Example 4.6. Let q = 11. Then use fixed values; a = 1, f = 1, x = 1, and
g = −1 and substitute in the curve equation (4.24). Then the discriminant of
(4.24) becomes

r2 = −4a(ax− bx) + (−bg + ax2 − bx2)2

r2 = −4(1− b) + 1

r2 = 4b− 3. (4.30)



§4.8 Computational Cost Analysis 47

Note that 4b − 3 must be a rational square to obtain rational points on the
elliptic curve. When r = 1, the equation (4.27) gives b = 1 but this value
is omitted due to the initial condition ab f g(a − b) 6= 0 of the elliptic curve
E(F11). When r = 2, the equation (4.27) gives b = 3. Now the curve equation
(4.24) becomes E(F11) : x

(
y2 + xy + 1

)
= 3y

(
x2 + xy− 1

)
. It is easy to check

that

E(F11) ={O, (0, 1), (1, 0), (1, 1), (1, 5), (3, 7), (4, 1), (4, 5), (5, 7), (6, 4),

(7, 6), (7, 10), (8, 4), (10, 1), (10, 6), (10, 10)},

so, #E(F11) = 16. Since P = (1, 1) ∈ E(F11) and Q = (10, 10) ∈ E(F11),
one can easily compute doubling point 2P = (8, 4) and 2Q =(3, 7) and point
addition of the point P + 2Q = (10, 6) and 2P + Q = (1, 5) on the curve
E(F11) by using the equations (4.5), (4.6), (4.7), and (4.8).

Lemma 4.7. If (x, y) is a rational point on

E(K) : ax
(

y2 + xy + f
)
− by

(
x2 + xy + g

)
= 0

and x 6= 0, y 6= 0, then (−x,−y) is also a rational point on E(K).

Proof. It is clear that if (x, y) is rational, then (−x,−y) is also rational. All one
has to do is to show that (−x,−y) is also on E(K). Substituting (−x,−y) in
E(K) gives the following.

a(−x)
(
(−y)2 + (−x)(−y) + f

)
− b(−y)

(
(−x)2 + (−x)(−y) + g

)
= 0

−ax
(

y2 + xy + f
)
+ by

(
x2 + xy + g

)
= 0

E(K) : ax
(

y2 + xy + f
)
− by

(
x2 + xy + g

)
= 0

Thus, (−x,−y) is also rational point on E(K).

4.8 Computational Cost Analysis

Each coordinate system cost is summarized in the Table 1 for point addition
and doubling point on standard coordinates for the elliptic curve (4.1).
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Table 1: Computational cost comparison

Coordinates
Cost

Addition Doubling

Projective 14m + 2s 13m + 5s

Jacobian 32m + 4s 29m + 5s

Lopez-Dahab 32m + 6s 26m + 5s

Embedding E(K) into P1 ×P1 12m 6m + 4s

Note that the computational cost using the embedding E(K) into P1 × P1

is lower than the projective, Jacobian, and Lopez-Dahab coordinate systems.
Thus, it is recommend to proceed with embedding of E(K) into P1 × P1

system as the cost is lower for point addition and doubling point on this
curve.

To compare our results with other Huff’s models, extra operations as a to
be addition/subtraction of curve constants and d as multiplication by curve
constants is taken.

Table 2: Computational cost comparison of other forms of Huff’s curve

Source and the curve equation Addition Doubling

Wu, Feng [39] plus assuming b=1,
11m+d+14a 6m+5s+d+12a

X(aY2 − Z2) = Y(X2 − Z2)

Joye, Tibouchi, Vergnaud [24],
6m+5s+13a 11m+14a

aX(Y2 − Z2) = bY(X2 − Z2)

Orhon and Hisil [32],
10m+14a 8m+10a

YT(Z2 + 2X2) = cXZ(T2 + 2Y2)

Orhon and Hisil [32],
10m+12a 8m+8a

YT(Z2 + X2) = cXZ(T2 + 2Y)
This work using projective coordinate,

14m+2s+2d+12a 13m+5s+2d+3a
aX(Y + XY + f Z2) = bY(X2 + XY + gZ2)

This work by embedding
aXZ(Y2 − cT2) = bTY(X2 − dZ2) 12m+6a+4d 6m+4s+4a+4d

into P1 ×P1
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Note that the computational cost on the curve described in this chapter is
almost equivalent to other known Huff’s model of elliptic curves [See in Table
2] by embedding the curve into P1 ×P1. The results shown by Ciss and Sow
on their curves [11] could be improved from 7m + 5s + 4a + 4d to 6m + 4s +
4a + 4d for the doubling point by embedding the curve into P1 ×P1.
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Chapter 5

Birational Equivalence to
Weierstrass Form of Elliptic Curves

When two curves E1 and E2 are isomorphic, they are said to be "same." An-
other approach to equate things is to remark that they are "nearly identical."
This chapter shows that the generalized Huff’s model of an elliptic curve is
birationally equivalent (nearly identical) to the Weierstrass form of elliptic
curves. This chapter first look at birational equivalence of Huff’s curves to
Weierstrass curves in the literature provided by [21, 24], and then show how
to achieve birational equivalence of our model of Huff’s curve to Weierstrass
curves.

5.1 Birational Equivalence of Huff’s Curve to Weier-

strass Curve

The affine Huff’s curve defined by E(K)H : ax(y2 − 1) = by(x2 − 1) in [24]
could be extended to a binary field as E(K) : ax(y2 + y+ 1) = by(x2 + x + 1).
The birationally equivalent to Weierstrass curve was found to be

v(v + (a + b)u = u(u + a2)(u + b2).

The inverse map are as

(x, y) =
(

b(u + a2)

v
,

a(u + b2)

v + (a + b)u

)
and (u, v) =

(
ab
x

,
ab(axy + b)

x2y

)
51
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with the neutral element as O = (0, 0). The method of achieving the above
results was not discussed in detail [24].

In 1928, Nagell proposed a simpler procedure to construct birational equiv-
alence in the specific case of plane curves. Nagell’s method failed in even
characteristics. In [37], the author describes how Nagell’s method [31] could
be modified to suit any characteristics. One can visit chapter 8 of [22] for the
details of Nagell’s algorithm.

5.1.1 Nagell’s Algorithm

Let E be a smooth curve defined by affine formulae, for some field K of any
characteristics. Let the O be a rational point of E which isn’t an inflection
point. To construct an birational equivalence of the elliptic curve from (E, O)

to a Weierstrass elliptic curve of affine form as

E(K) : y2 + a1xy + a3y = x3 + a2x2 + a4x2 + a6,

and mapping O to the point at infinity (0 : 1 : 0). As O is not an inflection
point, the tangent at O cuts E(K) again at second point P 6= O. The point at
infinity on the y-axis could be regarded as O = (0 : 1 : 0) and P = (0 : 0 : 1)
to the projective transformation of origin.

The affine equation of E(K) could be written as F(x, y) = 0. The polynomial
F is of a total degree of 3 and satisfies F(0, 0) = 0 since the origin is on E(K).
The polynomial F could be written as the following:

F = F1 + F2 + F3, where Fi, i is the homogeneous degree.

Let y = tx, then the equation of F(x, y) becomes

xF1(1, t) + x2F2(1, t) + x3F3(1, t) = 0.

Multiplying the above equation by
F3(1, t)

x
yields,
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x2F3(1, t)2 + xF2(1, t)F3(1, t) = −F1(1, t)F3(1, t).

Setting u = xF3(1, t), yields

u2 + F2(1, t)u = −F1(1, t)F3(1, t).

Note that the line x = 0 cuts E at infinity with multiplicity 2. This implies
that

F(0, y) = yF1(0, 1) + y2F2(0, 1) + y3F3(0, 1)

is of degree 3 − 2 = 1 in y. Therefore, F2(0, 1) = F3(0, 1) = 0, and it fol-
lows that polynomial F2(1, t) and F3(1, t) are of degree at most 1 and 2 in t,
respectively. The following equation is obtained:

u2 + G1(t)u = G3(t)

with G1 of degree at most 1 and G3 exactly 3. The rational map then is of the
following form:

(x, y)→ (t, u) =
(

x
y

,
F3(x, y)

x2

)
and

(t, u)→ (x, y) =
(

u
F3(1, t)

,
tu

F3(1, t)

)
.

The point O is sent to itself under the map, which are isogenies. One can visit
[37] for more detail.

5.1.2 Birational Equivalence of a New Form of Huff’s Curves

to Weierstrass Form.

Theorem 5.1. Let E(K) be a non-singular elliptic curve defined by the affine formu-
lae defined by equation (4.1). E(K) is birational equivalence to a Weierstrass form
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of y2 = t3 + a2t2 + a4t + a6, where t = x − A
BC

, A = a(a− b) f (a f + bg), B =

(a− b)bg(2a f + bg) , and C = b3g3.

Proof. It is easy to see that equation (4.1) is also equivalent to

axy2 + ax2y + ax f = bx2y + bxy2 + byg.

The signs of a, b, f , and g are either positive or negative and never equal to
zero. The curve has O = (0, 0) as the point of inflection. The curve has
(0 : 1 : 0), the point at infinity in projective transformation. For simplicity,
take E(K) in the following form:

E(K) : (a− b)XY2 + (a− b)X2Y + a f XZ2 − bgYZ2 = 0.

In chapter 8 of [22] as Cassels states that an elliptic curve genus 1 with at
least a rational point on the curve and Weierstrass form is enough to get
the birational equivalence to curve and where O is a rational point on the
Weierstrass curve. If the curve has an inflectional tangent at point O, then let
O = (0 : 1 : 0). The linear transformation of co-ordinates is enough to take
O to O and the tangent the line at infinity. Define O = (0 : 0 : 1) to be an
inflection point on E(K). O is firstly mapped to curve E(K)M.

Let

ψ = (X : Y : Z) 7−→ (U : V : W) = (U :
a f
bg

U + W, V ).

Then with a little bit of help from MATHEMATICA, the following parameters
are achieved:

A = a(a− b) f (a f + bg),

B = (a− b)bg(2a f + bg) ,

C = b3g3 , and

D = (a− b)b2g2.
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Then, E(K)M = AU3 + BU2W + DUW2 − CV2W = 0 is obtained. One can
note that EM could be easily changed to the Weierstrass form. To return to
Huff’s elliptic curve from E(K)M, one may apply the following map:

ψ−1 = (U : V : W) 7−→ (X : Y : Z) = (X : Z :
−a f
bg

X + Y ).

It is noted that (0 : 0 : 1) on E is mapped to (0 : 1 : 0) on E(K)M through ψ.

To obtain the Weierstrass affine form, let

X = x, V =
A
C

y, and Z =
C
A

then the equation E(K)M could be simplified as

E(K)M : y2 = x3 +
BC
A2 x2 +

DC2

A3 x.

After obtaining affine equation of EM, let x = t +
A

BC
to get the following

Weierstrass form equation,

E(K)w : y2 = t3 + a2t2 + a4t + a6,

where

a2 =
3A3 + B2C2

A2BC
,

a4 =
3A5 + 2A2B2C2 + B2C4D

A3B2C2 , and

a6 =
A5 + A2B2C2 + B2C4D

A2B3C3 .
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Chapter 6

Conclusion and Further Work

When compared to the previous several decades, technological advancements
have been significant. Communicating over the internet, and ideally utilizing
any device, is a common part of everyday life. As a result, the internet is
one of the most widely used platforms for sharing knowledge with people
all over the globe. Some material, on the other hand, is classified, and the
transmission may be hazardous if it is intercepted by an unwelcome party.
Consequently, encryption has become more important in our lives as a means
of protecting information sent via the internet.

At the outset of this thesis, we addressed the theoretical foundations of public-
key cryptography, which included the discrete logarithm issue and the elliptic
curve discrete logarithmic problem over a finite field, respectively. When us-
ing public-key encryption, it is thought that obtaining the decryption key in
a reasonable amount of time is virtually difficult. Public-key cryptography is
based on the use of elliptic curves, which are very useful. Elliptic curves are
capable of being utilized in cryptography. The selection of an elliptic curve is
dictated by the purpose for which it is to be used. The majority of the time,
the decision is made for the sake of speeding up the calculation of point addi-
tion and doubling point. While there are certain single curves and anomalous
elliptic curves that should not be used for cryptography, there are others that
should not be utilized because algorithms can solve the elliptic curve discrete
logarithm issue on these curves.

This thesis has introduced a new form of elliptic curves in generalized Huff’s
model. Formulae for point addition and doubling on the affine, projective,
Jacobian, Lopez-Dahab coordinates, and embedding of the curve into P1×P1
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system is presented. It is observed that the computational cost for point
addition and doubling point on the new form of Huff’s model of elliptic
curves is lowest by embedding the curve into P1 × P1 system than other
mentioned coordinate systems. The results shown by Ciss and Sow in Ciss
and Sow [11]on their curves have been improved from 7m + 5s + 4a + 4d
to 6m + 4s + 4a + 4d for the doubling point by embedding the curves into
P1 × P1 system. The computational cost of the contributed curve is nearly
optimal to other known Huff’s models.

Despite the fact that the Huff’s curves does not become the quickest curve
model, the efficiency gain of the Huff curve itself may be very significant. In
comparison to a classical computer, a quantum computer is much quicker,
and if this is taken into consideration, the Huff’s curve may be an option in
the near future. In this way, the results may be significant and represent a
new field of investigation. future work is required to compare computational
cost with other Huff’s, Weierstrass, Montgomery, and Edwards curves. Fur-
thermore, the study could be extended to supersingular elliptic curves and
isogeny-based cryptography.
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